期刊文献+
共找到171篇文章
< 1 2 9 >
每页显示 20 50 100
3D Finite Element Simulation of Tunnel Boring Machine Construction Processes in Deep Water Conveyance Tunnel 被引量:4
1
作者 钟登华 佟大威 《Transactions of Tianjin University》 EI CAS 2009年第2期101-107,共7页
Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excav... Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability. 展开更多
关键词 water conveyance tunnel tunnel boring machine CONSTRUCTION 3D finite element method numerical analysis SIMULATION
下载PDF
Fiber optic sensing and performance evaluation of a water conveyance tunnel with composite linings under super-high internal pressures 被引量:2
2
作者 Deyang Wang Honghu Zhu +3 位作者 Jingwu Huang Zhenrui Yan Xing Zheng Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期1997-2012,共16页
For long-distance water conveyance shield tunnels in operation,the high internal water pressure may cause excessive deformation of composite linings,affecting their structural integrity and serviceability.However,the ... For long-distance water conveyance shield tunnels in operation,the high internal water pressure may cause excessive deformation of composite linings,affecting their structural integrity and serviceability.However,the deformation and failure characteristics of lining structures under internal water pressure are not well investigated in the literature,particularly for three-layer composite linings.This study presents an in situ experimental investigation on the response of two types of composite linings(i.e.separated and combined lining structures)subjected to internal pressures,in which a fiber optic nerve system(FONS)equipped with distributed strain and displacement sensing nerves was employed to monitor the performance of the two composite linings during testing.The experimental results clearly show that the damage of the tunnel lining under different internal pressures was mainly located in the self-compaction concrete layer.The separated lining structure responded more aggressively to the variations in internal pressures than the combined one.Moreover,two evaluation indices,i.e.radial displacement and effective stiffness coefficient,are proposed for describing the changes in the structural bearing performance.The effective stiffness coefficients of the two types of lining structures were reduced by 39.4%and 29.5%,respectively.Considering the convenience of field monitoring,it is suggested that the average strains at different layers can be used as characteristic parameters for estimating the health conditions of lining structures in service.The analysis results provide a practical reference for the design and health evaluation of water conveyance shield tunnels with composite linings. 展开更多
关键词 Water conveyance tunnel Composite lining interface Strain measurement Geotechnical monitoring Fiber optic nerve system(FONS)
下载PDF
Eco-water conveyances applied to control desertification at the lower reaches of the Tarim River 被引量:1
3
作者 YE Mao XU Hailiang SONG Yudong 《Journal of Geographical Sciences》 SCIE CSCD 2005年第3期360-366,共7页
The lower reaches of the Tarim River are one of the areas suffering from most severe sandy desertification in Xinjiang, Northwest China. Irrational utilization of water and land resources results in eco-environmental ... The lower reaches of the Tarim River are one of the areas suffering from most severe sandy desertification in Xinjiang, Northwest China. Irrational utilization of water and land resources results in eco-environmental deterioration in the Tarim River. In May 2000, the local government carried out the water conveyances project in the Tarim River. The influence of water conveyance on desertification reversion is analyzed and discussed according to the monitoring data in the past three years. Based on monitored data of the nine observed sections, along the channel of conveyance, the intensity and scope of desertification reversion in the upper reaches are larger than those in the lower reaches. Dynamic changes of desertification reversion are more obvious from the channel of conveyance to its two sides. However, the range of influence and intensity of desertification reversion is limited at present. It is suggested that the way and range of water conveyances should be adjusted in the future. 展开更多
关键词 eco-water conveyances project (EWCP) the Tarim River desertification reversion INFLUENCE
下载PDF
Land use/land cover change responses to ecological water conveyance in the lower reaches of Tarim River,China
4
作者 WANG Shanshan ZHOU Kefa +2 位作者 ZUO Qiting WANG Jinlin WANG Wei 《Journal of Arid Land》 SCIE CSCD 2021年第12期1274-1286,共13页
The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin.However,excessive exploitation and over-utilization of natur... The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin.However,excessive exploitation and over-utilization of natural resources,particularly water resources,have triggered a series of ecological and environmental problems,such as the reduction in the volume of water in the main river,deterioration of water quality,drying up of downstream rivers,degradation of vegetation,and land desertification.In this study,the land use/land cover change(LUCC)responses to ecological water conveyance in the lower reaches of the Tarim River were investigated using ENVI(Environment for Visualizing Images)and GIS(Geographic Information System)data analysis software for the period of 1990-2018.Multi-temporal remote sensing images and ecological water conveyance data from 1990 to 2018 were used.The results indicate that LUCC covered an area of 2644.34 km^(2) during this period,accounting for 15.79%of the total study area.From 1990 to 2018,wetland,farmland,forestland,and artificial surfaces increased by 533.42 km^(2)(216.77%),446.68 km^(2)(123.66%),284.55 km^(2)(5.67%),and 57.51 km^(2)(217.96%),respectively,whereas areas covered by grassland and other land use/land cover types,such as Gobi,bare soil,and deserts,decreased by 103.34 km2(14.31%)and 1218.83 km2(11.75%),respectively.Vegetation area decreased first and then increased,with the order of 2010<2000<1990<2018.LUCC in the overflow and stagnant areas in the lower reaches of the Tarim River was mainly characterized by fragmentation,irregularity,and complexity.By analyzing the LUCC responses to 19 rounds of ecological water conveyance in the lower reaches of the Tarim River from 2000 to the end of 2018,we proposed guidelines for the rational development and utilization of water and soil resources and formulation of strategies for the sustainable development of the lower reaches of the Tarim River.This study provides scientific guidance for optimal scheduling of water resources in the region. 展开更多
关键词 land use/land cover change(LUCC) remote sensing land use dynamic index ecological water conveyance Tarim River
下载PDF
Effect of Reference Conveyance Parameter Usage on Real Time Canal Performance: The Case of Fentale Irrigation Scheme in Ethiopia
5
作者 Mebruk Mohammed Adam Tefera 《Computational Water, Energy, and Environmental Engineering》 2017年第1期79-88,共10页
In designing a canal system, a major problem is to decide what conveyance parameter to apply in the calculations. Since basic knowledge on this subject is lacking, it is usually taken from literatures. Most of the irr... In designing a canal system, a major problem is to decide what conveyance parameter to apply in the calculations. Since basic knowledge on this subject is lacking, it is usually taken from literatures. Most of the irrigation projects in Ethiopia are found to work below their expectation. One of the main reasons is the conveyance parameters variation from the expected (design) value which ultimately affects the envisioned conveyance efficiency. To evaluate this variation, Fentale irrigation scheme was used as case study. The conveyance efficiency used at the design stage was 80%, which was within Food and Agricultural Organization of the united nations recommendations;while the field survey value was 17%. Such huge variation was due to the fact that the assigned conveyance parameter values (roughness coefficient, hydraulic radius and bed slope) no longer represent the current situation of the scheme. Such variation has resulted in increase in the depth and top width of the water surface which further resulted in 13% and 3% increase in wetted perimeter and top width of the canal, respectively. Thus this study suggests that conveyance parameters shall be derived from history of existing irrigation schemes in a country, rather than adopting it from standard literatures. As such construction quality, maintenance activities and technological transfer activities in a country shall be seen in deciding the conveyance parameters. The study also suggests that the ever increasing water shortage in an irrigation project could be managed by proper maintenance of the entire irrigation system. 展开更多
关键词 conveyance Efficiency conveyance Parameters Fentale IRRIGATION SCHEME IRRIGATION CANAL Design
下载PDF
Predictive analysis of stress regime and possible squeezing deformation for super-long water conveyance tunnels in Pakistan
6
作者 Wang Chenghu Bao Linhai 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期825-831,共7页
The prediction of the stress field of deep-buried tunnels is a fundamental problem for scientists and engineers. In this study, the authors put forward a systematic solution for this problem. Databases from the World ... The prediction of the stress field of deep-buried tunnels is a fundamental problem for scientists and engineers. In this study, the authors put forward a systematic solution for this problem. Databases from the World Stress Map and the Crustal Stress of China, and previous research findings can offer prediction of stress orientations in an engineering area. At the same time, the Andersonian theory can be used to analyze the possible stress orientation of a region. With limited in-situ stress measurements, the Hock-Brown Criterion can be used to estimate the strength of rock mass in an area of interest by utilizing the geotechnical investigation data, and the modified Sheorey's model can subsequently be employed to predict the areas' stress profile, without stress data, by taking the existing in-situ stress measurements as input parameters. In this paper, a case study was used to demonstrate the application of this systematic solution. The planned Kohala hydropower plant is located on the western edge of Qinghai-Tibet Plateau. Three hydro-fracturing stress measurement campaigns indicated that the stress state of the area is SH - Sh 〉 Sv or SH 〉Sv 〉 Sh. The measured orientation of Sn is NEE (N70.3°-89°E), and the regional orientation of SH from WSM is NE, which implies that the stress orientation of shallow crust may be affected by landforms. The modified Sheorey model was utilized to predict the stress profile along the water sewage tunnel for the plant. Prediction results show that the maximum and minimum horizontal principal stres- ses of the points with the greatest burial depth were up to 56.70 and 40.14 MPa, respectively, and the stresses of areas with a burial depth of greater than 500 m were higher. Based on the predicted stress data, large deformations of the rock mass surrounding water conveyance tunnels were analyzed. Results showed that the large deformations will occur when the burial depth exceeds 300 m. When the burial depth is beyond 800 m, serious squeezing deformations will occur in the surrounding rock masses, thus requiring more attention in the design and construction. Based on the application efficiency in this case study, this prediction method proposed in this paper functions accurately. 展开更多
关键词 Super-long water conveyance tunnel In-situ stress state Squeezing deformation Prediction analysis Kohala hydropower plant
下载PDF
The Comparative Study of Chuangtse’s English Translations Under the Theory of Spirit Transmission and Meaning Conveyance
7
作者 QIN Xiaowan PENG Keming 《Cultural and Religious Studies》 2023年第4期183-186,共4页
Cultural-loaded word is one of the most popular topics in translation studies.The theory of spirit transmission and meaning conveyance provides a new way for the translation of cultural-loaded word.Based on the A Happ... Cultural-loaded word is one of the most popular topics in translation studies.The theory of spirit transmission and meaning conveyance provides a new way for the translation of cultural-loaded word.Based on the A Happy Excursion,this paper makes a comparative analysis of the translation strategies of seven English versions.This study will reveal the similarities and differences between Chinese and foreign translators’translation strategies. 展开更多
关键词 Chuangtse spirit transmission and meaning conveyance comparative study
下载PDF
Analysis on the ecological benefits of the stream water conveyance to the dried-up river of the lower reaches of Tarim River,China 被引量:58
8
作者 CHEN Yaning ZHANG Xiaolei +5 位作者 ZHU Xiangmin LI Weihong ZHANG Yuanming XU Hailiang ZHANG Hongfeng CHEN Yapeng 《Science China Earth Sciences》 SCIE EI CAS 2004年第11期1053-1064,共12页
This paper analyzes the monitored data of the 4 times of stream water conveyances to the river section where the stream flow was cut-off, of 9 groundwater-monitoring sections and 18 vegetation plots in the lower reach... This paper analyzes the monitored data of the 4 times of stream water conveyances to the river section where the stream flow was cut-off, of 9 groundwater-monitoring sections and 18 vegetation plots in the lower reaches of Tarim River. The results show that the groundwater depth in the lower reaches of Tarim River rose from 9.87 m before the conveyances to 7.74 m and 3.79 m after the first and second conveyances, 3.61 and 3.16 m after the 2 phases of the third conveyance, and 2.66 m after the fourth conveyance. The transverse response scope of groundwater level was gradually enlarged along both sides of the channel of conveyances, i.e., from 450 m in width after the first conveyance to 1050 m after the fourth conveyance, but the response degree of groundwater level was reduced with the increase of the distance away from the channel of conveyances. The composition, distribution and growth status of the natural vegetation are directly related to the groundwater depth. The indexes of Simpson’s biodiversity, McIntosh’s evenness and Margalef’s richness, which reflect the change of the quantity of species and the degree of biodiversity, are reduced from 0.70, 0.48 and 0.90 to 0.26, 0.17 and 0.37 re- spectively along with the drawdown of groundwater level from the upper reaches to the lower reaches. After the stream water conveyances, the natural vegetation in the lower reaches is saved and restored along with the rise of groundwater level, the response scope of vegetation is gradually enlarged, i.e., from 200— 250 m in width after the first conveyance to 800 m after the fourth conveyance. However, there is still a great disparity to the objective of protecting the “Green Corridor”in the lower reaches of Tarim River. Thus, it is suggested to convey the stream water in double-channel way, combine the conveyance with water supply in surface scope, or construct the modern pipe-conveyance network systems so as to save the natural vegetation in an intensive way, achieve the efficient water consumption and speed up the restoration and re- generation of the damaged ecosystems in the lower reaches of Tarim River. 展开更多
关键词 tream flow cut-off river section stream water conveyance groundwater level natural vegetation ecological benefit Tarim River
原文传递
RESEARCH ON SYSTEM DYNAMICS MODEL OF CONVEYANCE CAPACITY IN SYMMETRIC COMPOUND CHANNELS 被引量:2
9
作者 YANGKe-jun CAOShu-you LIUXing-nian 《Journal of Hydrodynamics》 SCIE EI CSCD 2005年第3期295-300,共6页
Stage-discharge curves are particularly important in river basin management. For a compound channel, the stage-discharge curve is often difficult to be extrapolated to yield estimates of level for a given frequency of... Stage-discharge curves are particularly important in river basin management. For a compound channel, the stage-discharge curve is often difficult to be extrapolated to yield estimates of level for a given frequency of flow. By analyzing a large number of experimental data from Science and Engineering Research Council Flood Channel Facility (SERC-FCF) and applying system dynamics method, the authors established system dynamics model of conveyance capacity when rivers flow in an overbank mode, spilling onto the adjoining flood plain. The model was applied to a compound channel. And the corresponding simulated results are shown to attain high accurcy. 展开更多
关键词 system dynamics model conveyance capacity symmetric compound channels resistance coefficient
原文传递
Efficient Identification of water conveyance tunnels siltation based on ensemble deep learning 被引量:1
10
作者 Xinbin WU Junjie LI Linlin WANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第5期564-575,共12页
The inspection of water conveyance tunnels plays an important role in water diversion projects.Siltation is an essential factor threatening the safety of water conveyance tunnels.Accurate and efficient identification ... The inspection of water conveyance tunnels plays an important role in water diversion projects.Siltation is an essential factor threatening the safety of water conveyance tunnels.Accurate and efficient identification of such siltation can reduce risks and enhance safety and reliability of these projects.The remotely operated vehicle(ROV)can detect such siltation.However,it needs to improve its intelligent recognition of image data it obtains.This paper introduces the idea of ensemble deep learning.Based on the VGG16 network,a compact convolutional neural network(CNN)is designed as a primary learner,called Silt-net,which is used to identify the siltation images.At the same time,the fully-connected network is applied as the meta-learner,and stacking ensemble learning is combined with the outputs of the primary classifiers to obtain satisfactory classification results.Finally,several evaluation metrics are used to measure the performance of the proposed method.The experimental results on the siltation dataset show that the classification accuracy of the proposed method reaches 97.2%,which is far better than the accuracy of other classifiers.Furthermore,the proposed method can weigh the accuracy and model complexity on a platform with limited computing resources. 展开更多
关键词 water conveyance tunnels siltation images remotely operated vehicles deep learning ensemble learning computer vision
原文传递
Prediction of water table depths under soil water-groundwater interaction and stream water conveyance 被引量:1
11
作者 DI ZhenHua XIE ZhengHui +3 位作者 YUAN Xing TIAN XiangJun LUO ZhenDong CHEN YaNing 《Science China Earth Sciences》 SCIE EI CAS 2011年第3期420-430,共11页
Water table over an arid region can be elevated to a critical level to sustain terrestrial ecosystem along the natural channel by the stream water conveyance. Estimation of water table depth and soil moisture on river... Water table over an arid region can be elevated to a critical level to sustain terrestrial ecosystem along the natural channel by the stream water conveyance. Estimation of water table depth and soil moisture on river channel profile may be reduced to a two-dimensional moving boundary problem with soil water-groundwater interaction. The two-dimensional soil water flow with stream water transferred is divided into an unsaturated vertical soil water flow and a horizontal groundwater flow. Therefore, a prediction model scheme for water table depths under the interaction between soil water and groundwater with stream water transferred is presented, which includes a vertical soil water movement model, a horizontal groundwater movement model, and an interface model. The synthetic experiments are conducted to test the sensitivities of the river elevation, horizontal conductivity, and surface flux, and the results from the experiments show the robustness of the proposed scheme under different conditions. The groundwater horizontal conductivity of the proposed scheme is also calibrated by SCE-UA method and validated by data collected at the Yingsu section in the lower reaches of the Tarim River, which shows that the model can reasonably simulate the water table depths. 展开更多
关键词 stream water conveyance soil water-groundwater interaction model SCE-UA method
原文传递
COMPUTATION OF MOMENTUM TRANSFER COEFFICIENT AND CONVEYANCE CAPACITY IN COMPOUND CHANNELS
12
作者 WANG Hua YANG Ke-jun CAO Shu-you LIU Xing-nian 《Journal of Hydrodynamics》 SCIE EI CSCD 2007年第2期225-229,共5页
The momentum transfer coefficient is an important parameter for determining the apparent shear stress at the vertical interface between the main channel and its associated flood plains,the cross-sectional mean velocit... The momentum transfer coefficient is an important parameter for determining the apparent shear stress at the vertical interface between the main channel and its associated flood plains,the cross-sectional mean velocity and the discharge capacity in compound channels. In this article,under the Boussinesq assumption and through analyzing the characteristics of velocity distribution in the interacting region between the main channel and its associated flood plain,the expression of momentum transfer coefficient was theoretically derived. On the basis of force balance,the expression of vertical apparent shear stress was obtained. By applying the experimental data from the British Engineering Research Council Flood Channel Facility (SERC-FCF),the relationship between the momentum transfer coefficient with the relative depth and the ratio of the flood plain width to the main channel width,was established,And hence the conveyance capacity in compound channels was calculated with Liu and Dong’s method. The computed results show that the momentum transfer coefficient relationship obtained is viable. 展开更多
关键词 compound channels momentum transfercoefficient apparent shear stress conveyance capacity
原文传递
Parametric resonance of axially functionally graded pipes conveying pulsating fluid
13
作者 Jie JING Xiaoye MAO +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期239-260,共22页
Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functio... Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid. 展开更多
关键词 pipe conveying fluid axially functionally graded supercritical resonance multi-scale method parametric resonance
下载PDF
Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model
14
作者 Runqing CAO Zilong GUO +2 位作者 Wei CHEN Huliang DAI Lin WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期261-276,共16页
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid... Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system. 展开更多
关键词 curved pipe conveying fluid pulsating fluid geometrically exact model(GEM) nonlinear dynamics parametric vibration FLUTTER
下载PDF
Coupled Numerical Simulation of Electromagnetic and Flow Fields in a Magnetohydrodynamic Induction Pump
15
作者 He Wang Ying He 《Fluid Dynamics & Materials Processing》 EI 2024年第4期889-899,共11页
Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the inf... Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices. 展开更多
关键词 Magnetic fluid multi-physical field coupling induction pump numerical simulation liquid metal conveying
下载PDF
Changes in groundwater levels and the response of natural vegetation to transfer of water to the lower reaches of the Tarim River 被引量:23
16
作者 XU Hai-liang YE Mao LI Ji-mei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第10期1199-1207,共9页
Restoration and reconstruction of the degraded Tarim River ecosystem is an important challenge. A goal of an ecological water conveyance project is to protect and restore the natural vegetation in the lower reaches of... Restoration and reconstruction of the degraded Tarim River ecosystem is an important challenge. A goal of an ecological water conveyance project is to protect and restore the natural vegetation in the lower reaches of Tadm River by transferring water from Bosten Lake, through the river channel, to the lower reaches. This study describes the changes in groundwater depth during the water transfer and the respondence of riparian vegetation to alterations in groundwater levels. The results indicate that groundwater depth along the Tarim River channel has a significant spatial-temporal component. Groundwater levels closest to the river channel show the most immediate and pronounced changes as a response to water transfer while those further away respond more slowly, although the observed change appears to be longer in duration. With a rise in the groundwater level, natural vegetation responded with higher growth rates, biomass and biodiversity. These favorable changes show that it is feasible to protect and restore the degraded natural vegetation by raising the groundwater depth. Plant communities are likely to reflect the hysteresis phenomenon, requiting higher water levels to initiate and stimulate desired growth than what may be needed to maintain the plant community. Because different species have different ecologies, including different root depths and densities and water needs, their response to increasing water availability will be spatially and temporally heterogenous. The response of vegetation is also influenced by microtopography and watering style. This paper discusses strategies for the protection and restoration of the degraded vegetation in the lower reaches of the Tarim River and provides information to complement ongoing theoretical research into ecological restoration in add or semi-arid ecosystems. 展开更多
关键词 the lower reaches of Tarim River ecological watering conveyance groundwater depth ecological response natural vegetation
下载PDF
Modeling and experimental investigation of drilling into lunar soils 被引量:3
17
作者 Tao CHEN Zhen ZHAO +1 位作者 Qi WANG Qingyun WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第1期153-166,共14页
Dry drilling only with the assistance of an auger is a reliable and realistic approach to remove abundant soils from the side of a bit in the harsh, dry conditions on the Moon. Based on an elementary analysis, using J... Dry drilling only with the assistance of an auger is a reliable and realistic approach to remove abundant soils from the side of a bit in the harsh, dry conditions on the Moon. Based on an elementary analysis, using Janssen's model to reflect the coupling effect among the different components of the stress, the present paper models the conveying dynamics along the helical groove and the sampling mechanism in the centering hole of the stem for an auger drilling into lunar soil simulant. Combining the two parts as well as a simple cutting model for the bit, a whole drilling model is established to investigate the complicated relation among the conveying ability of the auger, the coring rate, and drilling parameters such as the penetration and rotation speeds. The relation is revealed by the complicated transition between different sub-models with the help of the physical transition conditions. A series of experiments with constant penetration and rotation speeds are conducted to verify the model. Three aspects of characteristics of the drilling dynamics are manifested,(i) the loads on the bit are almost independent of penetration;(ii) three obvious drilling stages with respect to cut per revolution are grouped;(iii) a linear relationship is found between the coring rate and the revolution per penetration. 展开更多
关键词 CORING DRILL HELICAL GROOVE conveyance MECHANISM sampling MECHANISM
下载PDF
Flow characteristics and Shannon entropy analysis of dense-phase pneumatic conveying under high pressure
18
作者 赵长遂 梁财 +3 位作者 陈晓平 蒲文灏 鹿鹏 范春雷 《Journal of Southeast University(English Edition)》 EI CAS 2007年第4期609-614,共6页
Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The... Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The influences of different conveying differential pressures, coal moisture contents, gas volume flow rates and superficial velocities on the solid-gas ratios are investigated. Shannon entropy analysis of pressure fluctuation time series is developed to reveal the flow characteristics. Through investigation of the distribution of the Shannon entropy under different conditions, the flow stability and the evolutional tendency of the Shannon entropy in different regimes and regime transition processes are discovered, and the relationship between the Shannon entropy and the flow regimes is also established. The results indicate that the solid-gas ratio and the Shannon entropy rise with the increase in conveying differential pressure. The solid-gas ratio and the Shannon entropy reveal preferable regularity with gas volume flow rates. The Shannon entropy is different for different flow regimes, and can be used to identify the flow regimes. Both mass flow rate and the Shannon entropy decrease with the increase in moisture contents. The Shannon entropy analysis is a feasible approach for researching the characteristics of flow regimes, flow stability and flow regime transitions in dense-phase pneumatic conveying under high pressure. 展开更多
关键词 pneumatic conveying high pressure dense-phase solid-gas ratio Shannon entropy
下载PDF
Key Technical Issues of TGP Permanent Shiplock 被引量:2
19
作者 Fan Qixiang (China Yangtze Three Gorges Project Development Corporation, Yichang, Hubei\ 443002) 《工程科学(英文版)》 2003年第1期57-61,71,共6页
To solve the high dam navigation issue of a world class project is one of the key technical issues that bring many difficulties upon the Three Gorges Project (TGP). Special requirements exist in the TGP double lane fi... To solve the high dam navigation issue of a world class project is one of the key technical issues that bring many difficulties upon the Three Gorges Project (TGP). Special requirements exist in the TGP double lane five step shiplock in terms of a general layout of navigation structures, a sedimentation hindrance to navigation, hydraulics of the water conveyance system, treatment of high and steep slopes, the manufacture and technology of both main metal structures and mechanical and electric equipment, all of which have been resolved step by step by means of scientific tests, verification and engineering practice. 展开更多
关键词 NAVIGATION STRUCTURES WATER conveyance system HIGH and STEEP SLOPE hydraulics
下载PDF
On Modeling Drilling Load in Lunar Regolith Simulant
20
作者 Qi-Quan Quan Chong-Bin Chen +2 位作者 Zong-Quan Deng Jun-Yue Tang De-Wei Tang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第1期41-52,共12页
Drilling and coring, as effective ways to obtain lunar regolith along the longitudinal direction, are widely applied in the lunar sampling field. Conventionally, modeling of drill-soil interaction was divided into soi... Drilling and coring, as effective ways to obtain lunar regolith along the longitudinal direction, are widely applied in the lunar sampling field. Conventionally, modeling of drill-soil interaction was divided into soil cutting and screw conveyance processes, ignoring the differences in soil mechanical properties between them. To improve the modeling accuracy, a hypothesis that divides the drill-soil interaction into four parts: cuttings screw conveyance, cuttings extruding, cuttings bulldozing, and in situ simulant cutting, is proposed to establish a novel model based on the passive earth pressure theory. An iterative numerical calculation method is developed to predict the drilling loads. A drilling and coring testbed is developed to conduct experimental tests. Drilling experiments indicate that the drilling loads calculated by the proposed model match well the experimental results. The proposed research provides the instructions to adopt a suitable drilling strategy to match the rotary and penetrating motions, to increase the safety and reliability of drilling control in lunar sampling missions. 展开更多
关键词 Lunar regolith drilling Lunar regolith simulant Drill-simulant interaction Screw conveyance
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部