期刊文献+
共找到172篇文章
< 1 2 9 >
每页显示 20 50 100
Adjacent mode resonance of a hydraulic pipe system consisting of parallel pipes coupled at middle points 被引量:2
1
作者 Xin FAN Changan ZHU +1 位作者 Xiaoye MAO Hu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第3期363-380,共18页
The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pi... The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pipe subjected to the basement excitation at the left end is named as the active pipe,while the pipe without excitation is called the passive pipe.The clips between the two pipes are the bridge for the vibration energy.The adjacent natural frequencies will enhance the vibration coupling.The governing equation of the coupled system is deduced by the generalized Hamilton principle,and is discretized to the modal space.The modal correction is used during the discretization.The investigation on the natural characters indicates that the adjacent natural frequencies can be adjusted by the stiffness of the two clips and bracket.The harmonic balance method(HBM)is used to study the responses in the adjacent natural frequency region.The results show that the vibration energy transmits from the active pipe to the passive pipe swimmingly via the clips together with a flexible bracket,while the locations of them are not node points.The adjacent natural frequencies may arouse wide resonance curves with two peaks for both pipes.The stiffness of the clip and bracket can release the vibration coupling.It is suggested that the stiffness of the clip on the passive pipe should be weak and the bracket should be strong enough.In this way,the vibration energy is reflected by the almost rigid bracket,and is hard to transfer to the passive pipe via a soft clip.The best choice is to set the clips at the pipe node points.The current work gives some suggestions for weakening the coupled vibration during the dynamic design of a coupled hydraulic pipe system. 展开更多
关键词 hydraulic pipe system coupling vibration adjacent mode coupling parallel pipe conveying fluid harmonic balance method(HBM)
下载PDF
Fiber optic sensing and performance evaluation of a water conveyance tunnel with composite linings under super-high internal pressures 被引量:1
2
作者 Deyang Wang Honghu Zhu +3 位作者 Jingwu Huang Zhenrui Yan Xing Zheng Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期1997-2012,共16页
For long-distance water conveyance shield tunnels in operation,the high internal water pressure may cause excessive deformation of composite linings,affecting their structural integrity and serviceability.However,the ... For long-distance water conveyance shield tunnels in operation,the high internal water pressure may cause excessive deformation of composite linings,affecting their structural integrity and serviceability.However,the deformation and failure characteristics of lining structures under internal water pressure are not well investigated in the literature,particularly for three-layer composite linings.This study presents an in situ experimental investigation on the response of two types of composite linings(i.e.separated and combined lining structures)subjected to internal pressures,in which a fiber optic nerve system(FONS)equipped with distributed strain and displacement sensing nerves was employed to monitor the performance of the two composite linings during testing.The experimental results clearly show that the damage of the tunnel lining under different internal pressures was mainly located in the self-compaction concrete layer.The separated lining structure responded more aggressively to the variations in internal pressures than the combined one.Moreover,two evaluation indices,i.e.radial displacement and effective stiffness coefficient,are proposed for describing the changes in the structural bearing performance.The effective stiffness coefficients of the two types of lining structures were reduced by 39.4%and 29.5%,respectively.Considering the convenience of field monitoring,it is suggested that the average strains at different layers can be used as characteristic parameters for estimating the health conditions of lining structures in service.The analysis results provide a practical reference for the design and health evaluation of water conveyance shield tunnels with composite linings. 展开更多
关键词 Water conveyance tunnel Composite lining interface Strain measurement Geotechnical monitoring Fiber optic nerve system(FONS)
下载PDF
The Comparative Study of Chuangtse’s English Translations Under the Theory of Spirit Transmission and Meaning Conveyance
3
作者 QIN Xiaowan PENG Keming 《Cultural and Religious Studies》 2023年第4期183-186,共4页
Cultural-loaded word is one of the most popular topics in translation studies.The theory of spirit transmission and meaning conveyance provides a new way for the translation of cultural-loaded word.Based on the A Happ... Cultural-loaded word is one of the most popular topics in translation studies.The theory of spirit transmission and meaning conveyance provides a new way for the translation of cultural-loaded word.Based on the A Happy Excursion,this paper makes a comparative analysis of the translation strategies of seven English versions.This study will reveal the similarities and differences between Chinese and foreign translators’translation strategies. 展开更多
关键词 Chuangtse spirit transmission and meaning conveyance comparative study
下载PDF
Parametric resonance of axially functionally graded pipes conveying pulsating fluid
4
作者 Jie JING Xiaoye MAO +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期239-260,共22页
Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functio... Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid. 展开更多
关键词 pipe conveying fluid axially functionally graded supercritical resonance multi-scale method parametric resonance
下载PDF
Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model
5
作者 Runqing CAO Zilong GUO +2 位作者 Wei CHEN Huliang DAI Lin WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期261-276,共16页
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid... Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system. 展开更多
关键词 curved pipe conveying fluid pulsating fluid geometrically exact model(GEM) nonlinear dynamics parametric vibration FLUTTER
下载PDF
Coupled Numerical Simulation of Electromagnetic and Flow Fields in a Magnetohydrodynamic Induction Pump
6
作者 He Wang Ying He 《Fluid Dynamics & Materials Processing》 EI 2024年第4期889-899,共11页
Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the inf... Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices. 展开更多
关键词 Magnetic fluid multi-physical field coupling induction pump numerical simulation liquid metal conveying
下载PDF
3D Finite Element Simulation of Tunnel Boring Machine Construction Processes in Deep Water Conveyance Tunnel 被引量:4
7
作者 钟登华 佟大威 《Transactions of Tianjin University》 EI CAS 2009年第2期101-107,共7页
Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excav... Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability. 展开更多
关键词 water conveyance tunnel tunnel boring machine CONSTRUCTION 3D finite element method numerical analysis SIMULATION
下载PDF
Airtight negative pressure dust-control technology and application of transpersite in the coal conveyer belt system 被引量:2
8
作者 马云东 贾惠艳 张大明 《Journal of Coal Science & Engineering(China)》 2008年第4期562-566,共5页
Presented a new coal dust control program that was airtight negative pressure dust-control technology at the transpersite,combining with analysis with the movement of air currents and numerical simulation of gas-solid... Presented a new coal dust control program that was airtight negative pressure dust-control technology at the transpersite,combining with analysis with the movement of air currents and numerical simulation of gas-solid flow at the transpersite,and proved the mechanism of precipitation and proliferation for coal dust-controlt in theory.The technol- ogy has made good economic results at the Heidaigou Clean Plant,not only dust concen- tration control within 10 mg/m^3 to the work site,but also substantial energy savings and cost savings. 展开更多
关键词 coal conveyer belt system transpersite DUST airtight negative pressure dust-control
下载PDF
A X-ray Non-destructive Testing System for Mine Conveyer Belt 被引量:1
9
作者 程红 《High Technology Letters》 EI CAS 1997年第1期26-29,共4页
A system making use of X--ray projection image to make non--destructive testing of mine conveyer belt has been developed. In the system, an one--dimensional photoelectric diode array is used to receive the X--ray proj... A system making use of X--ray projection image to make non--destructive testing of mine conveyer belt has been developed. In the system, an one--dimensional photoelectric diode array is used to receive the X--ray projection image signals and convert them into electric signals. The principle of signal conversion is introduced and the prototype of this system is presented in this paper. 展开更多
关键词 Transverse failure MINE conveyer BELT X-RAY projection image NDT
下载PDF
Eco-water conveyances applied to control desertification at the lower reaches of the Tarim River 被引量:1
10
作者 YE Mao XU Hailiang SONG Yudong 《Journal of Geographical Sciences》 SCIE CSCD 2005年第3期360-366,共7页
The lower reaches of the Tarim River are one of the areas suffering from most severe sandy desertification in Xinjiang, Northwest China. Irrational utilization of water and land resources results in eco-environmental ... The lower reaches of the Tarim River are one of the areas suffering from most severe sandy desertification in Xinjiang, Northwest China. Irrational utilization of water and land resources results in eco-environmental deterioration in the Tarim River. In May 2000, the local government carried out the water conveyances project in the Tarim River. The influence of water conveyance on desertification reversion is analyzed and discussed according to the monitoring data in the past three years. Based on monitored data of the nine observed sections, along the channel of conveyance, the intensity and scope of desertification reversion in the upper reaches are larger than those in the lower reaches. Dynamic changes of desertification reversion are more obvious from the channel of conveyance to its two sides. However, the range of influence and intensity of desertification reversion is limited at present. It is suggested that the way and range of water conveyances should be adjusted in the future. 展开更多
关键词 eco-water conveyances project (EWCP) the Tarim River desertification reversion INFLUENCE
下载PDF
Gas-Solid Flow Behavior in a Pneumatic Conveying System for Drying Applications: Coarse Particles Feeding with a Venturi Device 被引量:1
11
作者 Thiago Faggion de Pádua Rodrigo Béttega José Teixeira Freire 《Advances in Chemical Engineering and Science》 2015年第3期225-238,共14页
The feeding of coarse particles (>0.5 mm diameter) directly into a riser operating at positive pressure is important for drying and pre-heating applications. The presence of the feeding device can lead to heterogen... The feeding of coarse particles (>0.5 mm diameter) directly into a riser operating at positive pressure is important for drying and pre-heating applications. The presence of the feeding device can lead to heterogeneity of drying and heating, and is the main factor responsible for pressure loss in short conveying systems. However, there is a lack of information concerning the axial and radial distributions of coarse particles in this type of configuration, despite the recent advances when dealing with fine particles (FCC catalyst). The present work therefore investigates a vertical venturi feeder with the conveying system operating in dilute-phase regime with 1 mm spherical glass particles. Experimental assays revealed the behavior of the mass flow rate of solids in the system, and pressure measurements were made along the riser in order to evaluate the accuracy of simulations. Euler-Euler simulations provided close estimation of the experimental pressure drop and the pressure drop according to distance in the linear region. Simulation of the fluid dynamics in the riser showed that solids clusters were formed at low concentrations near the feeding device, reflecting heterogeneity in the solid phase volume fraction. 展开更多
关键词 Pneumatic CONVEYING VENTURI FEEDER Coarse Particles DRYING CFD
下载PDF
Land use/land cover change responses to ecological water conveyance in the lower reaches of Tarim River,China
12
作者 WANG Shanshan ZHOU Kefa +2 位作者 ZUO Qiting WANG Jinlin WANG Wei 《Journal of Arid Land》 SCIE CSCD 2021年第12期1274-1286,共13页
The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin.However,excessive exploitation and over-utilization of natur... The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin.However,excessive exploitation and over-utilization of natural resources,particularly water resources,have triggered a series of ecological and environmental problems,such as the reduction in the volume of water in the main river,deterioration of water quality,drying up of downstream rivers,degradation of vegetation,and land desertification.In this study,the land use/land cover change(LUCC)responses to ecological water conveyance in the lower reaches of the Tarim River were investigated using ENVI(Environment for Visualizing Images)and GIS(Geographic Information System)data analysis software for the period of 1990-2018.Multi-temporal remote sensing images and ecological water conveyance data from 1990 to 2018 were used.The results indicate that LUCC covered an area of 2644.34 km^(2) during this period,accounting for 15.79%of the total study area.From 1990 to 2018,wetland,farmland,forestland,and artificial surfaces increased by 533.42 km^(2)(216.77%),446.68 km^(2)(123.66%),284.55 km^(2)(5.67%),and 57.51 km^(2)(217.96%),respectively,whereas areas covered by grassland and other land use/land cover types,such as Gobi,bare soil,and deserts,decreased by 103.34 km2(14.31%)and 1218.83 km2(11.75%),respectively.Vegetation area decreased first and then increased,with the order of 2010<2000<1990<2018.LUCC in the overflow and stagnant areas in the lower reaches of the Tarim River was mainly characterized by fragmentation,irregularity,and complexity.By analyzing the LUCC responses to 19 rounds of ecological water conveyance in the lower reaches of the Tarim River from 2000 to the end of 2018,we proposed guidelines for the rational development and utilization of water and soil resources and formulation of strategies for the sustainable development of the lower reaches of the Tarim River.This study provides scientific guidance for optimal scheduling of water resources in the region. 展开更多
关键词 land use/land cover change(LUCC) remote sensing land use dynamic index ecological water conveyance Tarim River
下载PDF
The urban land use system in China
13
作者 陈政辉 《Journal of Chongqing University》 CAS 2003年第2期81-85,共5页
The obstacles to urban land development caused by Chinese immature land use system are explored. Key features of the dual land use system are analyzed on base of the constructing model of the dual land market in Chine... The obstacles to urban land development caused by Chinese immature land use system are explored. Key features of the dual land use system are analyzed on base of the constructing model of the dual land market in Chinese cities, in which market-based allocation including negotiation, tender and auction conveyance and non-market administrative allocation coexist. Some suggestions for solving the problems are brought forward after illustrating by facts problems existing in Chongqing抯 land market that the administratively allocated land is difficult to be collocated optimally and the black market is harmful to urban land development. In conclusion the land use system reformation is a complicated systems engineering involving interactions among various factors. Government to institute and execute corresponding policies is important to establish a uniform land market system. 展开更多
关键词 land use system land conveyance administratively allocated land black market
下载PDF
Effect of Reference Conveyance Parameter Usage on Real Time Canal Performance: The Case of Fentale Irrigation Scheme in Ethiopia
14
作者 Mebruk Mohammed Adam Tefera 《Computational Water, Energy, and Environmental Engineering》 2017年第1期79-88,共10页
In designing a canal system, a major problem is to decide what conveyance parameter to apply in the calculations. Since basic knowledge on this subject is lacking, it is usually taken from literatures. Most of the irr... In designing a canal system, a major problem is to decide what conveyance parameter to apply in the calculations. Since basic knowledge on this subject is lacking, it is usually taken from literatures. Most of the irrigation projects in Ethiopia are found to work below their expectation. One of the main reasons is the conveyance parameters variation from the expected (design) value which ultimately affects the envisioned conveyance efficiency. To evaluate this variation, Fentale irrigation scheme was used as case study. The conveyance efficiency used at the design stage was 80%, which was within Food and Agricultural Organization of the united nations recommendations;while the field survey value was 17%. Such huge variation was due to the fact that the assigned conveyance parameter values (roughness coefficient, hydraulic radius and bed slope) no longer represent the current situation of the scheme. Such variation has resulted in increase in the depth and top width of the water surface which further resulted in 13% and 3% increase in wetted perimeter and top width of the canal, respectively. Thus this study suggests that conveyance parameters shall be derived from history of existing irrigation schemes in a country, rather than adopting it from standard literatures. As such construction quality, maintenance activities and technological transfer activities in a country shall be seen in deciding the conveyance parameters. The study also suggests that the ever increasing water shortage in an irrigation project could be managed by proper maintenance of the entire irrigation system. 展开更多
关键词 conveyance Efficiency conveyance Parameters Fentale IRRIGATION SCHEME IRRIGATION CANAL Design
下载PDF
Predictive analysis of stress regime and possible squeezing deformation for super-long water conveyance tunnels in Pakistan
15
作者 Wang Chenghu Bao Linhai 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期825-831,共7页
The prediction of the stress field of deep-buried tunnels is a fundamental problem for scientists and engineers. In this study, the authors put forward a systematic solution for this problem. Databases from the World ... The prediction of the stress field of deep-buried tunnels is a fundamental problem for scientists and engineers. In this study, the authors put forward a systematic solution for this problem. Databases from the World Stress Map and the Crustal Stress of China, and previous research findings can offer prediction of stress orientations in an engineering area. At the same time, the Andersonian theory can be used to analyze the possible stress orientation of a region. With limited in-situ stress measurements, the Hock-Brown Criterion can be used to estimate the strength of rock mass in an area of interest by utilizing the geotechnical investigation data, and the modified Sheorey's model can subsequently be employed to predict the areas' stress profile, without stress data, by taking the existing in-situ stress measurements as input parameters. In this paper, a case study was used to demonstrate the application of this systematic solution. The planned Kohala hydropower plant is located on the western edge of Qinghai-Tibet Plateau. Three hydro-fracturing stress measurement campaigns indicated that the stress state of the area is SH - Sh 〉 Sv or SH 〉Sv 〉 Sh. The measured orientation of Sn is NEE (N70.3°-89°E), and the regional orientation of SH from WSM is NE, which implies that the stress orientation of shallow crust may be affected by landforms. The modified Sheorey model was utilized to predict the stress profile along the water sewage tunnel for the plant. Prediction results show that the maximum and minimum horizontal principal stres- ses of the points with the greatest burial depth were up to 56.70 and 40.14 MPa, respectively, and the stresses of areas with a burial depth of greater than 500 m were higher. Based on the predicted stress data, large deformations of the rock mass surrounding water conveyance tunnels were analyzed. Results showed that the large deformations will occur when the burial depth exceeds 300 m. When the burial depth is beyond 800 m, serious squeezing deformations will occur in the surrounding rock masses, thus requiring more attention in the design and construction. Based on the application efficiency in this case study, this prediction method proposed in this paper functions accurately. 展开更多
关键词 Super-long water conveyance tunnel In-situ stress state Squeezing deformation Prediction analysis Kohala hydropower plant
下载PDF
Design and Implementation of Remote Control System of Coal Mine Conveyor Belt based on PLC
16
作者 Fei LIU Sufang LIU +1 位作者 Xiuzhen ZHANG Yang YANG 《International Journal of Technology Management》 2015年第3期88-90,共3页
Aiming at the existing problems of safety, reliability and flexibility in the traditional coal mine belt transport system, this paper designed the mine centralized control system transmitted by CAN bus and PLC as the ... Aiming at the existing problems of safety, reliability and flexibility in the traditional coal mine belt transport system, this paper designed the mine centralized control system transmitted by CAN bus and PLC as the core, and use comparison instructions and trigger of Siemens S7-200 PLC, the article has elaborated the four level conveyor belt sequence control, realized the sequence start, reverse sequence stop and fault processing and other functions for four level conveyor belt, the compared with traditional timer control instructions scheme, the design has clear thinking, simple design program, and is easy to be extended to multilevel belt drive sequence control. 展开更多
关键词 Conveyer belt Centralized control CAN bus PLC INTOUCH
下载PDF
Nonlinear Dynamics of Viscoelastic Pipe Conveying Pulsating Fluid Subjected to Base Excitation 被引量:1
17
作者 FU Guang-ming TUO Yu-hang +3 位作者 SU Jian WANG Kai LI Lei SUN Bao-jiang 《China Ocean Engineering》 SCIE EI CSCD 2023年第5期781-793,共13页
Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governin... Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governing partial differential equation is transformed into a nonlinear system of fourth-order ordinary differential equations by using the generalized integral transform technique(GITT).The effects of the combined excitation of base motion and pulsating internal flow on the nonlinear dynamic behavior of the pipe are investigated using a bifurcation diagram,phase trajectory diagram,power spectrum diagram,time-domain diagram,and Poincare map.The results show that the base excitation amplitude and frequency significantly affect the dynamic behavior of the pipe system.Some new resonance phenomena can be observed,such as the period-1 motion under the base excitation or the pulsating internal flow alone becomes the multi-periodic motion,quasi-periodic motion or even chaotic motion due to the combined excitation action. 展开更多
关键词 pipe conveying fluid base excitation pulsating internal flow combined excitation generalized integral transform technique
下载PDF
材料特性对输送脉动流体的粘弹性轴向功能梯度管非线性动力行为的影响 被引量:1
18
作者 付光明 庹宇航 +4 位作者 张贺恩 苏健 孙宝江 王锴 娄敏 《哈尔滨工程大学学报(英文版)》 CSCD 2023年第2期247-259,共13页
The nonlinear dynamic behaviors of viscoelastic axially functionally graded material(AFG)pipes conveying pulsating internal flow are very complex.And the dynamic behavior will induce the failure of the pipes,and resea... The nonlinear dynamic behaviors of viscoelastic axially functionally graded material(AFG)pipes conveying pulsating internal flow are very complex.And the dynamic behavior will induce the failure of the pipes,and research of vibration and stability of pipes becomes a major concern.Considering that the elastic modulus,density,and coefficient of viscoelastic damping of the pipe material vary along the axial direction,the transverse vibration equation of the viscoelastic AFG pipe conveying pulsating fluid is established based on the Euler-Bernoulli beam theory.The generalized integral transform technique(GITT)is used to transform the governing fourth-order partial differential equation into a nonlinear system of fourth-order ordinary differential equations in time.The time domain diagram,phase portraits,Poincarémap and power spectra diagram at different dimensionless pulsation frequencies,are discussed in detail,showing the characteristics of chaotic,periodic,and quasi-periodic motion.The results show that the distributions of the elastic modulus,density,and coefficient of viscoelastic damping have significant effects on the nonlinear dynamic behavior of the viscoelastic AFG pipes.With the increase of the material property coefficient k,the transition between chaotic,periodic,and quasi-periodic motion occurs,especially in the high-frequency region of the flow pulsation. 展开更多
关键词 Axially functionally graded pipe Pipe conveying pulsating flow Integral transforms Nonlinear dynamics Chaotic motion Quasi-periodic motion
下载PDF
Flow characteristics and Shannon entropy analysis of dense-phase pneumatic conveying under high pressure
19
作者 赵长遂 梁财 +3 位作者 陈晓平 蒲文灏 鹿鹏 范春雷 《Journal of Southeast University(English Edition)》 EI CAS 2007年第4期609-614,共6页
Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The... Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The influences of different conveying differential pressures, coal moisture contents, gas volume flow rates and superficial velocities on the solid-gas ratios are investigated. Shannon entropy analysis of pressure fluctuation time series is developed to reveal the flow characteristics. Through investigation of the distribution of the Shannon entropy under different conditions, the flow stability and the evolutional tendency of the Shannon entropy in different regimes and regime transition processes are discovered, and the relationship between the Shannon entropy and the flow regimes is also established. The results indicate that the solid-gas ratio and the Shannon entropy rise with the increase in conveying differential pressure. The solid-gas ratio and the Shannon entropy reveal preferable regularity with gas volume flow rates. The Shannon entropy is different for different flow regimes, and can be used to identify the flow regimes. Both mass flow rate and the Shannon entropy decrease with the increase in moisture contents. The Shannon entropy analysis is a feasible approach for researching the characteristics of flow regimes, flow stability and flow regime transitions in dense-phase pneumatic conveying under high pressure. 展开更多
关键词 pneumatic conveying high pressure dense-phase solid-gas ratio Shannon entropy
下载PDF
19世纪英美古典法学与信托法的体系化
20
作者 陈颐 《清华法治论衡》 CSSCI 2014年第1期252-276,共25页
直到19世纪中叶,所有关于信托法的论著仍延续着17世纪培根(Francis Bacon)的《用益法解读》(Reading on the Statute of Uses)的模本。~①这些著作更多地将其研究对象描述为"用益"而非"信托"。~②特别是,他们以实... 直到19世纪中叶,所有关于信托法的论著仍延续着17世纪培根(Francis Bacon)的《用益法解读》(Reading on the Statute of Uses)的模本。~①这些著作更多地将其研究对象描述为"用益"而非"信托"。~②特别是,他们以实用的方式对待《用益法》对不动产转让(convey- 展开更多
关键词 信托法 衡平法 动产转让 梅特兰 科斯蒂 推定信托 READING 对物权 convey 结果信托
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部