期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A Detection Method of Bolts on Axlebox Cover Based on Cascade Deep Convolutional Neural Network
1
作者 Ji Wang Liming Li +5 位作者 Shubin Zheng Shuguang Zhao Xiaodong Chai Lele Peng Weiwei Qi Qianqian Tong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1671-1706,共36页
This paper proposes a cascade deep convolutional neural network to address the loosening detection problem of bolts on axlebox covers.Firstly,an SSD network based on ResNet50 and CBAM module by improving bolt image fe... This paper proposes a cascade deep convolutional neural network to address the loosening detection problem of bolts on axlebox covers.Firstly,an SSD network based on ResNet50 and CBAM module by improving bolt image features is proposed for locating bolts on axlebox covers.And then,theA2-PFN is proposed according to the slender features of the marker lines for extracting more accurate marker lines regions of the bolts.Finally,a rectangular approximationmethod is proposed to regularize themarker line regions asaway tocalculate the angle of themarker line and plot all the angle values into an angle table,according to which the criteria of the angle table can determine whether the bolt with the marker line is in danger of loosening.Meanwhile,our improved algorithm is compared with the pre-improved algorithmin the object localization stage.The results show that our proposed method has a significant improvement in both detection accuracy and detection speed,where ourmAP(IoU=0.75)reaches 0.77 and fps reaches 16.6.And in the saliency detection stage,after qualitative comparison and quantitative comparison,our method significantly outperforms other state-of-the-art methods,where our MAE reaches 0.092,F-measure reaches 0.948 and AUC reaches 0.943.Ultimately,according to the angle table,out of 676 bolt samples,a total of 60 bolts are loose,69 bolts are at risk of loosening,and 547 bolts are tightened. 展开更多
关键词 Loosening detection cascade deep convolutional neural network object localization saliency detection
下载PDF
Gaussian shaper for nuclear pulses based on multilevel cascade convolution 被引量:6
2
作者 Min Wang Jian‑Bin Zhou +2 位作者 Xiao‑Ping Ouyang Ying‑Jie Ma Xu Hong 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第12期116-127,共12页
For nuclear measurements,it is necessary to obtain accurate information from nuclear pulses,which should be obtained by first shaping the pulses outputted by the detectors.However,commonly used pulse-shaping algorithm... For nuclear measurements,it is necessary to obtain accurate information from nuclear pulses,which should be obtained by first shaping the pulses outputted by the detectors.However,commonly used pulse-shaping algorithms have certain problems.For example,certain pulse-shaping algorithms have long dead-times in high-counting-rate environments or are difficult to achieve in digital systems.Gaussian signals are widely used in analog nuclear instruments owing to their symmetry and completeness.A Gaussian signal is usually implemented by using a multilevel S–K filter in series or in parallel.It is difficult to construct a real-time digital Gaussian filter for the complex Gaussian filtering algorithm.Based on the multilevel cascade convolution,a pulse-shaping algorithm for double exponential signals is proposed in this study,which,in addition to double exponential signals,allows more complex output signal models to be used in the new algorithm.The proposed algorithm can be used in high-counting-rate environments and has been implemented in an FPGA with fewer multipliers than those required in other traditional Gaussian pulse-shaping algorithms.The offline processing results indicated that the average peak base width of the output-shaped pulses obtained using the proposed algorithm was reduced compared with that obtained using the traditional Gaussian pulse-shaping algorithm.Experimental results also demonstrated that signal-to-noise ratios and energy resolutions were improved,particularly for pulses with a low energy.The energy resolution was improved by 0.1–0.2%while improving the counting rate. 展开更多
关键词 Impulse shaping Multilevel cascade convolution S–K filter Gaussian-like distribution Double exponential signal
下载PDF
Healthcare Monitoring Using Ensemble Classifiers in Fog Computing Framework
3
作者 P.M.Arunkumar Mehedi Masud +1 位作者 Sultan Aljahdali Mohamed Abouhawwash 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期2265-2280,共16页
Nowadays,the cloud environment faces numerous issues like synchronizing information before the switch over the data migration.The requirement for a centralized internet of things(IoT)-based system has been restricted ... Nowadays,the cloud environment faces numerous issues like synchronizing information before the switch over the data migration.The requirement for a centralized internet of things(IoT)-based system has been restricted to some extent.Due to low scalability on security considerations,the cloud seems uninteresting.Since healthcare networks demand computer operations on large amounts of data,the sensitivity of device latency evolved among health networks is a challenging issue.In comparison to cloud domains,the new paradigms of fog computing give fresh alternatives by bringing resources closer to users by providing low latency and energy-efficient data processing solutions.Previous fog computing frameworks have various flaws,such as overvaluing response time or ignoring the accuracy of the result yet handling both at the same time compromises the network community.In this proposed work,Health Fog is integrated with the Optimized Cascaded Convolution Neural Network framework for diagnosing heart disease.Initially,the data is collected,and then pre-processing is done by Linear Discriminant Analysis.Then the features are extracted and optimized using Galactic Swarm Optimization.The optimized features are given into the Health Fog framework for diagnosing heart disease patients.It uses ensemble-based deep learning in edge computing devices,which automatically monitors real-life health networks such as heart disease analysis.Finally,the classifiers such as bagging,boosting,XGBoost,Multi-Layer Perceptron(MLP),and Partitions(PART)are used for classifying the data.Then the majority voting classifier predicts the result.This work uses FogBus architecture and evaluates the execution of power usage,bandwidth of the network,latency,execution time,and accuracy. 展开更多
关键词 Healthfog FogBus cascaded convolution neural network cloud computing heart disease automatic health monitoring internet of things
下载PDF
Research on Facial Expression Capture Based on Two-Stage Neural Network
4
作者 Zhenzhou Wang Shao Cui +1 位作者 Xiang Wang JiaFeng Tian 《Computers, Materials & Continua》 SCIE EI 2022年第9期4709-4725,共17页
To generate realistic three-dimensional animation of virtual character,capturing real facial expression is the primary task.Due to diverse facial expressions and complex background,facial landmarks recognized by exist... To generate realistic three-dimensional animation of virtual character,capturing real facial expression is the primary task.Due to diverse facial expressions and complex background,facial landmarks recognized by existing strategies have the problem of deviations and low accuracy.Therefore,a method for facial expression capture based on two-stage neural network is proposed in this paper which takes advantage of improved multi-task cascaded convolutional networks(MTCNN)and high-resolution network.Firstly,the convolution operation of traditional MTCNN is improved.The face information in the input image is quickly filtered by feature fusion in the first stage and Octave Convolution instead of the original ones is introduced into in the second stage to enhance the feature extraction ability of the network,which further rejects a large number of false candidates.The model outputs more accurate facial candidate windows for better landmarks recognition and locates the faces.Then the images cropped after face detection are input into high-resolution network.Multi-scale feature fusion is realized by parallel connection of multi-resolution streams,and rich high-resolution heatmaps of facial landmarks are obtained.Finally,the changes of facial landmarks recognized are tracked in real-time.The expression parameters are extracted and transmitted to Unity3D engine to drive the virtual character’s face,which can realize facial expression synchronous animation.Extensive experimental results obtained on the WFLW database demonstrate the superiority of the proposed method in terms of accuracy and robustness,especially for diverse expressions and complex background.The method can accurately capture facial expression and generate three-dimensional animation effects,making online entertainment and social interaction more immersive in shared virtual space. 展开更多
关键词 Facial expression capture facial landmarks multi-task cascaded convolutional networks high-resolution network animation generation
下载PDF
Information Entropy Based Prioritization Strategy for Data-driven Transient Stability Batch Assessment 被引量:1
5
作者 Rong Yan Zhaoyu Wang +2 位作者 Yuxuan Yuan Guangchao Geng Quanyuan Jiang 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第3期443-455,共13页
Transient stability batch assessment(TSBA)is es-sential for dynamic security check in both power system planning and day-ahead dispatch.It is also a necessary technique to generate sufficient training data for data-dr... Transient stability batch assessment(TSBA)is es-sential for dynamic security check in both power system planning and day-ahead dispatch.It is also a necessary technique to generate sufficient training data for data-driven online transient stability assessment(TSA).However,most existing work suffers from various problems including high computational burden,low model adaptability,and low performance robustness.Therefore,it is still a significant challenge in modern power systems,with numerous scenarios(e.g.,operating conditions and"N-k"contin-gencies)to be assessed at the same time.The purpose of this work is to construct a data-driven method to early terminate time-domain simulation(TDS)and dynamically schedule TSBA task queue a prior,in order to reduce computational burden without compromising accuracy.To achieve this goal,a time-adaptive cas-caded convolutional neural networks(CNNs)model is developed to predict stability and early terminate TDS.Additionally,an information entropy based prioritization strategy is designed to distinguish informative samples,dynamically schedule TSBA task queue and timely update model,thus further reducing simulation time.Case study in IEEE 39-bus system validates the effectiveness of the proposed method. 展开更多
关键词 cascaded convolutional neural networks(CNNs) dynamic task queue information entropy based prioritization strategy time-domain simulation(TDS) transient stability batch assessment(TSBA)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部