This paper applies the convolutional differentiator method, based on generalized Forsyte orthogonal polynomial (CFPD), to simulate the seismic wave propagation in two-phase media. From the numerical results we can s...This paper applies the convolutional differentiator method, based on generalized Forsyte orthogonal polynomial (CFPD), to simulate the seismic wave propagation in two-phase media. From the numerical results we can see that three types of waves, fast P-waves, S-waves and slow P-waves, can be observed in the seismic wave field. The experiments on anisotropic models demonstrate that the wavefront is elliptic instead of circular and S-wave splitting occurs in anisotropic two-phase media. The research has confirmed that the rules of elastic wave propagation in fluid-saturated porous media are controlled by Biot's theory. Experiment on a layered fault model shows the wavefield generated by the interface and the fault very well, indicating the effectiveness of CFPD method on the wavefield modeling for real layered media in the Earth. This research has potential applications to the investigation of Earth's deep structure and oil/gas exploration.展开更多
Based on the techniques of forward and inverse Fourier transformation, the authors discussed the design scheme of ordinary differentiator used and applied in the simulation of acoustic and elastic wavefields in isotro...Based on the techniques of forward and inverse Fourier transformation, the authors discussed the design scheme of ordinary differentiator used and applied in the simulation of acoustic and elastic wavefields in isotropic media respectively. To compress Gibbs effects by truncation effectively, Hanning window is introduced in. The model computation shows that, the convolutional differentiator method has the advantages of rapidity, low requirements of computer′s inner storage and high precision, which is a potential method of numerical simulation.展开更多
The perfectly matched layer(PML) was first introduced by Berenger as an absorbing boundary condition for electromagnetic wave propagation.In this article,a method is developed to ex-tend the PML to simulating seismi...The perfectly matched layer(PML) was first introduced by Berenger as an absorbing boundary condition for electromagnetic wave propagation.In this article,a method is developed to ex-tend the PML to simulating seismic wave propagation in fluid-saturated porous medium.This non-physical boundary is used at the computational edge of a Forsyte polynomial convolutional differenti-ator(FPCD) algorithm as an absorbing boundary condition to truncate unbounded media.The incor-poration of PML in Biot's equations is given.Numerical results show that the PML absorbing bound-ary condition attenuates the outgoing waves effectively and eliminates the reflections adequately.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.40874045)Special Funds for Sciences and Technology Research of Public Welfare Trades(Grant Nos. 200811021 and 201011042)
文摘This paper applies the convolutional differentiator method, based on generalized Forsyte orthogonal polynomial (CFPD), to simulate the seismic wave propagation in two-phase media. From the numerical results we can see that three types of waves, fast P-waves, S-waves and slow P-waves, can be observed in the seismic wave field. The experiments on anisotropic models demonstrate that the wavefront is elliptic instead of circular and S-wave splitting occurs in anisotropic two-phase media. The research has confirmed that the rules of elastic wave propagation in fluid-saturated porous media are controlled by Biot's theory. Experiment on a layered fault model shows the wavefield generated by the interface and the fault very well, indicating the effectiveness of CFPD method on the wavefield modeling for real layered media in the Earth. This research has potential applications to the investigation of Earth's deep structure and oil/gas exploration.
文摘Based on the techniques of forward and inverse Fourier transformation, the authors discussed the design scheme of ordinary differentiator used and applied in the simulation of acoustic and elastic wavefields in isotropic media respectively. To compress Gibbs effects by truncation effectively, Hanning window is introduced in. The model computation shows that, the convolutional differentiator method has the advantages of rapidity, low requirements of computer′s inner storage and high precision, which is a potential method of numerical simulation.
基金supported by the National Natural ScienceFoundation of China (No. 40804008)
文摘The perfectly matched layer(PML) was first introduced by Berenger as an absorbing boundary condition for electromagnetic wave propagation.In this article,a method is developed to ex-tend the PML to simulating seismic wave propagation in fluid-saturated porous medium.This non-physical boundary is used at the computational edge of a Forsyte polynomial convolutional differenti-ator(FPCD) algorithm as an absorbing boundary condition to truncate unbounded media.The incor-poration of PML in Biot's equations is given.Numerical results show that the PML absorbing bound-ary condition attenuates the outgoing waves effectively and eliminates the reflections adequately.