In this paper, four kinds of integral equations of convolution type are solved, in which the reflection occurs, that is, besides the unknown f(t),f(-t) is also appeared. Moreover, it is mentioned that the methods or s...In this paper, four kinds of integral equations of convolution type are solved, in which the reflection occurs, that is, besides the unknown f(t),f(-t) is also appeared. Moreover, it is mentioned that the methods or solution for two of them are still effective when translation shifts, i.e., f(t+lambda(j)) or/and f(-t-mu(j)), occur in addition.展开更多
In this paper, two kinds of convolution integral equations with both Cauchy kernel and reflection are discussed. Using Fourier transformation theory they can be transformed into Riemann boundary value problems with bo...In this paper, two kinds of convolution integral equations with both Cauchy kernel and reflection are discussed. Using Fourier transformation theory they can be transformed into Riemann boundary value problems with both discontinuous coefficients and reflection. And we give a new method, by which the general solution and the condition of solvability are obtained respectively.展开更多
文摘In this paper, four kinds of integral equations of convolution type are solved, in which the reflection occurs, that is, besides the unknown f(t),f(-t) is also appeared. Moreover, it is mentioned that the methods or solution for two of them are still effective when translation shifts, i.e., f(t+lambda(j)) or/and f(-t-mu(j)), occur in addition.
文摘In this paper, two kinds of convolution integral equations with both Cauchy kernel and reflection are discussed. Using Fourier transformation theory they can be transformed into Riemann boundary value problems with both discontinuous coefficients and reflection. And we give a new method, by which the general solution and the condition of solvability are obtained respectively.