期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Controlled Rolling and Cooling Process for Low Carbon Cold Forging Steel 被引量:4
1
作者 李壮 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第1期89-93,共5页
Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show th... Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show that the specimens with fast cooling after hot rolling exhibit very good mechanical properties, and the improvement of the mechanical properties can be attributed mainly to the ferrite-grain refinement. The mechanical properties increase with decreasing final cooling temperature within the range from 670 ℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony. The specimen with fast cooling after low temperature rolling shows the highest values of the mechanical properties. The effect of the ferrite grain size on the mechanical properties was greater than that of pearlite morphology in the present study. The mechanical properties of specimens by controlled rolling and cooling process without thermal treatment were greatly superior to that of the same specimens by the conventional rolling, and their tensile strength reached 490 MPa grade even in the case of low temperature rolling without controlled rolling. It might be expected to realize the substitution medium-carbon by low-carbon for 490 MPa grade cold forging steel with controlled rolling and cooling process. 展开更多
关键词 controlled rolling and cooling process low carbon cold forging steel fast cooling low temperature rolling the ferrite-grain refineme
下载PDF
EFFECT OF THE CONTROLLED ROLLING CONTROLLED COOLING ON STRENGTH AND DUCTILITY OF THE BAINITE MICRO ALLOYED ENGINEERING STEEL 被引量:2
2
作者 Z. Li, G. D. Wang,X. H. Liu and C. Y. Ma The State Key Lab. of Rolling Technology and Automation, Northeastern Univarsity, Shenyang 110006 China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期421-427,共7页
The continuous cooling transformation of hot deformation austenite austenite of test steel and the effect of different processing schedules of controlled rolling and controlled cooling on the strength and ductility ha... The continuous cooling transformation of hot deformation austenite austenite of test steel and the effect of different processing schedules of controlled rolling and controlled cooling on the strength and ductility have been studied. The theory and the experiment base are presented for controlled rolling and controlled cooling of the SBL micro alloyed engineering steel. 展开更多
关键词 micro alloyed engineering steel controlled rolling and controlled cooling strength and ductility BAINITE
下载PDF
The development and application of ultra fast cooling in hot-rolled
3
作者 YE Xiaoyu,ZUO Jun and ZHANG Kaihua PanGang Group Research Institute Co.,Ltd.,Panzhihua,Chengdu 611731,Sichuan,China 《Baosteel Technical Research》 CAS 2010年第S1期36-,共1页
Ultra fast cooling is a new technology which used to control the hot-rolling strip cooling in recent years on the international developed.If suitably cooperated with a number of other new controlled rolling technologi... Ultra fast cooling is a new technology which used to control the hot-rolling strip cooling in recent years on the international developed.If suitably cooperated with a number of other new controlled rolling technologies,can achieve fast and accurate temperature control in the hot-rolled strip production process to obtain corresponding transformation microstructure and ideal mechanical properties.This article describes the technical principle and layout of ultra fast cooling in hot-rolled as well as application profiles in the major iron and steel enterprise in China and abroad.Carried out the layout of ultra fast cooling analysis on the adaptability of steel that install between the finishing mill and laminar cooling,on this basis,proposed the use of ultra fast cooling technology proposals. 展开更多
关键词 ultra fast cooling controlled rolling and controlled cooling adaptability analysis
下载PDF
Influence of Controlled Rolling and Cooling Process on the Mechanical Properties of Low Carbon Cold Forging Steel 被引量:1
4
作者 LI Zhuang 1,WU Di 2,ZHENG Hui 1,DONG Xue-xin 2 (1.School of Materials Science and Engineering,Shenyang University of Aeronautics and Astronautics,Shenyang 110136,Liaoning,China 2.State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110004,Liaoning,China) 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S1期595-599,共5页
In the present paper,controlled rolling and cooling processing was conducted by using a laboratory hot rolling mill.The influence of different processing parameters on the mechanical properties of low carbon cold forg... In the present paper,controlled rolling and cooling processing was conducted by using a laboratory hot rolling mill.The influence of different processing parameters on the mechanical properties of low carbon cold forging steel was investigated.The results show that the faster cooling after the deformation (especially in low temperature rolling conditions) leads to the refinement of the ferrite grain.The specimen exhibits very good mechanical properties owing to the finer ferrite grains.The pearlite morphologies can also affect the mechanical properties of low carbon cold forging steel.The mechanical properties increase with decreasing final cooling temperature within the range from 650℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony.The mechanical properties of the specimens with fast cooling after the conventional rolling are not only better than those of the specimens with slow cooling after low temperature rolling,but also almost similar to those of the specimens with fast cooling after low temperature rolling.It is suggested that fast cooling after high temperature rolling (the conventional rolling) process would be of important industrial value. 展开更多
关键词 controlled rolling and cooling process low carbon cold forging steel fast cooling the finer ferrite grains mechanical properties
原文传递
Effect of controlled rolling/controlled cooling parameters on microstructure and mechanical properties of the novel pipeline steel 被引量:1
5
作者 Min Jiang Li-Na Chen +3 位作者 Jin He Guang-Yao Chen Chong-He Li Xiong-Gang Lu 《Advances in Manufacturing》 SCIE CAS 2014年第3期265-274,共10页
The study of controlled rolling/controlled cooling process parameters which affect the microstructure and mechanical properties of a novel pipeline steel has been optimized by the orthogonal experiment with four facto... The study of controlled rolling/controlled cooling process parameters which affect the microstructure and mechanical properties of a novel pipeline steel has been optimized by the orthogonal experiment with four factors and three levels in this paper. However, the parameters of thermo-mechanical control process (TMCP) optimized by the Gleeble-3500 hot simulator could not satisfy performance requirements of the X100 pipeline steel. In order to improve the performance of this steel, the influence of finish cooling temperature (FCT) on the microstructure and property is studied in detail. It is found that, as this steel is thermo-mechanically treated by this set of parameters (the start heating temperature, finish rolling temperature (FRT), FCT and cooling rate of 1,180 ℃, 810 ℃, 350 ℃ and 35 ℃/s, respectively), the micro- structures are mainly composed of granular bainite (GB) and acicular ferrite (AF). The effective grain sizes are below 20 μm; the steel reaches the optimal balance between the strength and the toughness; the yield strength is 695 MPa; the tensile strength is 768 MPa; the elongation is 16.6 %; the impact energy is 262 J at room temperature. All indexes could meet the requirements of X100 pipeline steel. 展开更多
关键词 Controlled rolling/controlled cooling Finishcooling temperature (FCT) Microstructure ~ Mechanicalproperties X100 pipeline steel
原文传递
Analysis of the change of roll thermal crown in 1750 mm hot strip mill
6
作者 MA Zhanfu~(1)),LI Ziwen~(2)) and ZHAO Xicheng~(1)) 1) Xi’ an University of Architecture and Technology,Xian 710055 Shanxi,China 2) Xinijang Bayi Iron &steel Co.,Ltd.,Wulumuqi 830022,Xinjiang,China 《Baosteel Technical Research》 CAS 2010年第S1期34-,共1页
Studied the distributing of roll temperature and the change rule of thermal crown in 1 750 hot strip mill,the result of the test showed that the change of roll thermal crown was affected by the condition of roll cooli... Studied the distributing of roll temperature and the change rule of thermal crown in 1 750 hot strip mill,the result of the test showed that the change of roll thermal crown was affected by the condition of roll cooling and equipmentthe roll thermal crown was obviously improved after altering the pipe and water nib of cooling equipment.From the rule of roll thermal crown changing with the number of strip rolling know that the thermal crown of work roll of Standi is the largest,and Stand 6 is the smallest one in a period of rolling. 展开更多
关键词 hot strip mill ROLL roll cooling thermal crown
下载PDF
The Applications and Practice of Front Ultra Fast Cooling Technology in C-Mn Steel 被引量:1
7
作者 ZUO Jun 1,LIU Yong 2,ZHANG Kai-hua 1,YE Xiao-yu 1,LI Wei-ping 2,HUANG Xu-jing 2 (1.PanGang Group Research Institute Co,Ltd,Chengdu,611731,Sichuan,China 2.PanGang Group Panzhihua Steel & Vanadium Co,Ltd,Panzhihua,617067,Sichuan,China) 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S1期576-580,共5页
Ultra Fast Cooling is a new technology which used to control the hot-rolling strip cooling in recent years on the international developed.It can achieve fast and accurate temperature control in the hot-rolled strip pr... Ultra Fast Cooling is a new technology which used to control the hot-rolling strip cooling in recent years on the international developed.It can achieve fast and accurate temperature control in the hot-rolled strip production process to obtain corresponding transformation microstructure and ideal mechanical properties.This article describes the technical principle and layout of ultra fast cooling in hot-rolled as well as cooling features.Analysis the effect of front ultra fast cooling technology in C-Mn steel and obtained consequent on the industrial produced low-cost Q345 hot rolled steel in Panzhihua Iron and Steel. 展开更多
关键词 ultra fast cooling controlled rolling and controlled cooling Q345 LOW-COST
原文传递
新型中厚板轧后冷却设备的研究与设计
8
作者 韩毅 《冶金设备》 2016年第6期25-27,43,共4页
本文研究设计了一种新型中厚板轧后冷却设备。主要介绍了设备的总体结构设计及工艺布置方法,通过采用新的缝隙喷嘴、高密快冷喷嘴交错布置的方式使得在大范围压力、流量调节条件下均可保持射流流体形状良好,从而钢板的瞬时冷却速度能够... 本文研究设计了一种新型中厚板轧后冷却设备。主要介绍了设备的总体结构设计及工艺布置方法,通过采用新的缝隙喷嘴、高密快冷喷嘴交错布置的方式使得在大范围压力、流量调节条件下均可保持射流流体形状良好,从而钢板的瞬时冷却速度能够实现大范围无级调节,极大满足了不同中厚产品冷却工艺的需求。 展开更多
关键词 中厚板 轧后冷却 设备 研究设计
原文传递
Effects of TMCP Parameters on the Microstructure and Mechanical Properties of Nb-Bearing Spring Steel 被引量:3
9
作者 ZHANG Chao-lei,LIU Ya-zheng,ZHOU Le-yu,JIANG Chao,SUN Xiao-jun (School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 10083,China) 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S1期581-584,共4页
The effects of TMCP parameters,such as finish rolling temperature and cooling rate on the microstructure and mechanical properties of Nb-bearing spring steel were investigated by thermal simulation,quantitative metall... The effects of TMCP parameters,such as finish rolling temperature and cooling rate on the microstructure and mechanical properties of Nb-bearing spring steel were investigated by thermal simulation,quantitative metallography and tensile test.And the precipitation in Nb-bearing spring steel was analysis by electron microscopy.Experimental results indicate that the higher finish rolling temperature or the more rapid cooling rate in a given range,the less the proeutectoid ferrite content and the thinner the interlamellar spacing is.Reasonably higher finish rolling temperature followed by properly higher cooling rate is suggested to improve the mechanical properties of Nb-bearing spring steel.Micro-addition of niobium decreases the proeutectoid ferrite content and the interlamellar spacing and leads to forming degenerated pearlite.The precipitation of size range ~20-50 nm in Nb-bearing spring steel occurred at the lamellar ferrite of pearlite and the proeutectoid ferrite. 展开更多
关键词 spring steel NIOBIUM controlled rolling and cooling MICROSTRUCTURE mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部