The continuous cooling transformation of hot deformation austenite austenite of test steel and the effect of different processing schedules of controlled rolling and controlled cooling on the strength and ductility ha...The continuous cooling transformation of hot deformation austenite austenite of test steel and the effect of different processing schedules of controlled rolling and controlled cooling on the strength and ductility have been studied. The theory and the experiment base are presented for controlled rolling and controlled cooling of the SBL micro alloyed engineering steel.展开更多
In this article, numerical investigation of the effects of different plasma actuation strengths on the film cooling flow characteristics has been conducted using large eddy simulation (LES). For this numerical resea...In this article, numerical investigation of the effects of different plasma actuation strengths on the film cooling flow characteristics has been conducted using large eddy simulation (LES). For this numerical research, the plasma actuator is placed downstream of the trailing edge of the film cooling hole and a phenomenological model is employed to provide the electric field generated by it, resulting in the body forces. Our results show that as the plasma actuation strength grows larger, under the downward effect of the plasma actuation, the jet trajectory near the cooling hole stays closer to the wall and the recirculation region observably reduces in size. Meanwhile, the momentum injection effect of the plasma actuation also actively alters the distributions of the velocity components downstream of the cooling hole. Consequently, the influence of the plasma actuation strength on the Reynolds stress downstream of the cooling hole is remarkable. Furthermore, the plasma actuation weakens the strength of the kidney shaped vortex and prevents the jet from lifting off the wall. Therefore, with the increase of the strength of the plasma actuation, the coolant core stays closer to the wall and tends to split into two distinct regions. So the centerline film cooling efficiency is enhanced, and it is increased by 55% at most when the plasma actuation strength is 10.展开更多
The effect of fast cooling rate on the microstructure and mechanical properties of low-carbon high-strength steel annealed in the intercritical region was investigated using a Gleeble 1500 thermomechanical simulator a...The effect of fast cooling rate on the microstructure and mechanical properties of low-carbon high-strength steel annealed in the intercritical region was investigated using a Gleeble 1500 thermomechanical simulator and a continuous annealing thermomeehanical simulator. The results showed that the microstructure consisted of ferrite and bainite as the main phases with a small amount of retained austenite and martensite islands at cooling rate of 5 and 50 ℃/s, respectively. Fast cooling after continuous annealing affected all constituents of the microstructure. The mechanical properties were improved considerably. Ultimate tensile strength (U-TS) increased and total elongation (TEL) decreased with increasing cooling rate in all specimens. The specimen 1 at a cooling rate of 5 ℃/s exhibited the maximum TEL and UTSxTEL (20% and 27 200 MPa%, respectively) because of the competition between weakening by presence of the retained austenite plus the carbon indigence by carbide precipitation, and strengthening by martensitic islands and precipitation. The maximum UTS and YS (1 450 and 951 MPa, respectively) were obtained for specimen 2 at a cooling rate of 50 ℃/s. This is attributed to the effect of dispersion strengthening of finer martensite islands and the effect of precipitation strengthening of carbide precipitates.展开更多
The industrial trials of two cooling modes, i e, water cooling in forepart + air cooling in later part (WAC) and air cooling in forepart + water cooling in later part (AWC), were carried out for a Ti- Nb microalloyed ...The industrial trials of two cooling modes, i e, water cooling in forepart + air cooling in later part (WAC) and air cooling in forepart + water cooling in later part (AWC), were carried out for a Ti- Nb microalloyed steel. The average cooling rates and coiling temperature were the same for two modes. The continuous cooling transformation (CCT) curve of the tested steel was drawn. The effects of the cooling mode on the microstructure, precipitates, and properties of the steels were investigated. Results show that the strength of the steel in the WAC mode is significantly larger than that in the AWC mode, mainly because the smaller the grain size, the more and finer the grain precipitates. Therefore, when the average cooling rate is constant, the fast cooling in the forepart is an effective method to increase the strength of steels. However, the increase in the strength is accompanied by the decrease in toughness, so that the toughness of the steel should be considered when changing the cooling mode.展开更多
Aim: To study the strength and microstructure of trace-Ti-bearing stracture steel. Materials and Methods: The strength and microstructure of the trace Ti bearing structure steel were studied by two kinds of controlled...Aim: To study the strength and microstructure of trace-Ti-bearing stracture steel. Materials and Methods: The strength and microstructure of the trace Ti bearing structure steel were studied by two kinds of controlled cooling simulation testing results in the first stage cooling and the last stage cooling after hot press deformation in the traceTi-bearing structure steel. Results: It showed that the ferrite grain size, the relative contribution of the involved strength and the mechanical strength were influenced more or less by different cooling rates. Both the refinement of ferrite grain and the increase of mechanical strength could be obtained by the proper decrease of water cooling interruption temperature (WTI) and coiling temperature (CT) in the first stage cooling or the proper increase of water cooling beginning temperature (WTB) and proper decrease of coiling temperature (CT) in the last stage cooling. Conclusion: The strength, the ferrite grain refinement and the yield tensile ratio in the first stage cooling process are much better than those in the last stage cooling process.展开更多
The microstmcture and mechanical properties of SA533B low-alloy steel were investigated under different cooling and tempering conditions. Steel plates cooled at 40℃/s and 25℃/min,exibited microstructures of auto-tem...The microstmcture and mechanical properties of SA533B low-alloy steel were investigated under different cooling and tempering conditions. Steel plates cooled at 40℃/s and 25℃/min,exibited microstructures of auto-tempered martensite and bainite, respectively. During tempering, the strength of steels quenched at the two different cooling rates decreased continuously with an increase in the tempering parameter, which is defined by T (20 + log t), where T is the temperature and t is the holding time. However, the rate of change of the strength scales with the degree to which the virgin microstructure deviates from equilibrium. The strength of the martensitic steel decreased faster and finally obtained a value close to that of the bainitic steel. The ductility and toughness gradually improved during tempering, passed through a maximum value, and finally diminished. The level of maximum toughness was also found to depend on the cooling rates of SA533B steel. The high cooling rate with a microstructure of auto-tempered martensite exhibited a larger toughness and a lower ductile-brittle transition temperature than the low cooling rate with a microstructure of bainite, because the former had finer precipitated cementite particles at quenching and a slower coarsing rate during tempering.展开更多
We investigated phase transition and precipitation of ultra-high strength steel(UHSS)in a new "short process" with controlled rolling and controlled cooling.Thermalexpansion test combined with metallographic obser...We investigated phase transition and precipitation of ultra-high strength steel(UHSS)in a new "short process" with controlled rolling and controlled cooling.Thermalexpansion test combined with metallographic observation was used to research the continuous cooling transformation(CCT)curve.Moreover,the microstructuraltransformation and precipitation law was revealed by morphologicalobservation and alloying elements by electron probe micro-analyzer(EPMA).Transmission electron microscopy(TEM)was utilized to analyze the composition and grain orientation of microstructure.The study showed that the measured criticaltransformation temperatures of Ac1 and Ac3 were 746 and 868 ℃,respectively.The CCT curve indicated that the undercooled austenite was transformed into proeutectoid ferrite and bainite with HV 520 in a broad range of cooling rate 0.1^(-1) ℃·s^(-1).When subjected to a cooling rate of 1 ℃·s^(-1),the undercooled austenite was divided into small-sized blocks by formed martensite.With further increase of cooling rate,micro-hardness increased dramatically,the microstructure of specimen was mainly lathe bainite(LB),granular bainite(GB),lath martensite(LM)and residualaustenite.By diffraction test analysis,it was identified that there was K-S orientation relationship between martensite and austenite for {110}_α//{111}_γ,{111}_α//{101}_γ.EPMA clearly showed that carbon diffused adequately due to staying for a long time at high temperature with a lower cooling rate of 2 ℃·s-1.Phase transition drive force was lower and the residualaustenite existed in the block form of Martensite austenite island(M-A).With the increase of cooling rate to 10 ℃·s^(-1),the block residualaustenite reduced,the carbon content of residualaustenite increased and α phase around the residualaustenite formed into a low carbon bainite form.展开更多
In order to control the ferrite and austenite percentage in duplex stainless steel welding, many researchers try to change the laser welding parameters and cooling medium, but ignore to study the influence of heat sin...In order to control the ferrite and austenite percentage in duplex stainless steel welding, many researchers try to change the laser welding parameters and cooling medium, but ignore to study the influence of heat sink effect on weld strength. In this work, the effect of aluminium heat sink and varying cooling medium on the laser welding of duplex stainless steel (DSS) 2205 is studied. The 2 mm thick DSS sheets welded with pulsed Nd: YAG laser welding machine by varying the cooling medium (air and oil) and an aluminium plate used as a heat sink. The welded specimens tested for tensile strength, micro-hardness, distortion, microstructure and radiography analysis. The faster cooling rate in the oil quenching process enhances the ferrite percentage compared with air-cooled samples. But the faster cooling rate in oil quenching leads to more distortion and using aluminium as a heat sink influenced positively the distortion to a small extent. The lower cooling rate in air quenching leads to a higher tensile strength of the welded specimen. The objective of this work is to analyse experimentally the effect of cooling medium and heat sink in the mechanical and metallurgical properties of laser welded duplex stainless steel.展开更多
Tests were carried out to study the strength deterioration of concrete cooled in air or by water after sub-high temperature at different level and varying with cycles. It is proved that the cross-shaped cracks turned ...Tests were carried out to study the strength deterioration of concrete cooled in air or by water after sub-high temperature at different level and varying with cycles. It is proved that the cross-shaped cracks turned up and extended little by little on the surface of specimen subjected to repeat sub-high temperature, the splitting failure is characterized by cross-shaped cracks after 30 cycles, the concrete strengths decrease rapidly at early stage and to be steady subsequently with the increase of the temperature cycles, the splitting-tensile strength is more sensitive to temperature cycles than the compressive strength, the decline of concrete strength is mainly controlled by the maximum temperature having reached, the ultrasonic velocity in concrete is also declined. On the basis of test results, the mechanisms of sub-high temperature to the strength deterioration of concrete are analyzed.The formulas for calculating the compressive and splitting-tensile strength of concrete relating to the variation of temperature are proposed.展开更多
Calcite has a highly anisotropic thermal expansion coefficient, and repeated heating and cooling cycles can potentially destabilize chalks by breaking cement bonds between neighboring particles. Based on tensile stren...Calcite has a highly anisotropic thermal expansion coefficient, and repeated heating and cooling cycles can potentially destabilize chalks by breaking cement bonds between neighboring particles. Based on tensile strength measurements, we investigated how temperature cycles induce weakening of chalk.Tensile strength tests were performed on chalk specimens sampled from Kansas(USA) and Mons(Belgium), each with differing amounts of contact cement. Samples of the two chalk types were tested in dry and water-saturated states, and then exposed to 0, 15, and 30 temperature cycles in order to find out under what circumstances thermally induced tensile strength reduction occurs. The testing results show that the dry samples were not influenced by temperature cycling in either of the chalk types. However, in the water-saturated state, tensile strength is increasingly reduced with progressive numbers of temperature cycles for both chalk samples, especially for the more cemented Kansas chalk. The Kansas chalk demonstrated higher initial tensile strength compared to the less cemented Mons chalk, but the strength of both chalks was reduced by the same relative proportion when undergoing thermal cycles in the water-saturated state.展开更多
On the basis of the effect of carbon precipitation on the microstructure and properties of steel products below At temperature, a new thermal treatment method (temper-rapid cooling process) was studied. By the tempe...On the basis of the effect of carbon precipitation on the microstructure and properties of steel products below At temperature, a new thermal treatment method (temper-rapid cooling process) was studied. By the temper-rapid cooling process, the yield strengths of the high strength low carbon (HSLC) steel ZJ330 and SPA-H produced using the compact strip production (CSP) process increased from 340 to about 410 MPa and from 410 to about 450 MPa, respectively. The results indirectly indicated that there existed nanoscaled iron-carbon precipitates that have obvious precipitation effect on low carbon steel produced by CSP. The prospect of application is discussed.展开更多
文摘The continuous cooling transformation of hot deformation austenite austenite of test steel and the effect of different processing schedules of controlled rolling and controlled cooling on the strength and ductility have been studied. The theory and the experiment base are presented for controlled rolling and controlled cooling of the SBL micro alloyed engineering steel.
文摘In this article, numerical investigation of the effects of different plasma actuation strengths on the film cooling flow characteristics has been conducted using large eddy simulation (LES). For this numerical research, the plasma actuator is placed downstream of the trailing edge of the film cooling hole and a phenomenological model is employed to provide the electric field generated by it, resulting in the body forces. Our results show that as the plasma actuation strength grows larger, under the downward effect of the plasma actuation, the jet trajectory near the cooling hole stays closer to the wall and the recirculation region observably reduces in size. Meanwhile, the momentum injection effect of the plasma actuation also actively alters the distributions of the velocity components downstream of the cooling hole. Consequently, the influence of the plasma actuation strength on the Reynolds stress downstream of the cooling hole is remarkable. Furthermore, the plasma actuation weakens the strength of the kidney shaped vortex and prevents the jet from lifting off the wall. Therefore, with the increase of the strength of the plasma actuation, the coolant core stays closer to the wall and tends to split into two distinct regions. So the centerline film cooling efficiency is enhanced, and it is increased by 55% at most when the plasma actuation strength is 10.
基金Sponsored by National Natural Science Foundation of China(No.51004037)Shenyang City Application Basic Research Project(No.F13-316-1-15)
文摘The effect of fast cooling rate on the microstructure and mechanical properties of low-carbon high-strength steel annealed in the intercritical region was investigated using a Gleeble 1500 thermomechanical simulator and a continuous annealing thermomeehanical simulator. The results showed that the microstructure consisted of ferrite and bainite as the main phases with a small amount of retained austenite and martensite islands at cooling rate of 5 and 50 ℃/s, respectively. Fast cooling after continuous annealing affected all constituents of the microstructure. The mechanical properties were improved considerably. Ultimate tensile strength (U-TS) increased and total elongation (TEL) decreased with increasing cooling rate in all specimens. The specimen 1 at a cooling rate of 5 ℃/s exhibited the maximum TEL and UTSxTEL (20% and 27 200 MPa%, respectively) because of the competition between weakening by presence of the retained austenite plus the carbon indigence by carbide precipitation, and strengthening by martensitic islands and precipitation. The maximum UTS and YS (1 450 and 951 MPa, respectively) were obtained for specimen 2 at a cooling rate of 50 ℃/s. This is attributed to the effect of dispersion strengthening of finer martensite islands and the effect of precipitation strengthening of carbide precipitates.
基金Funded by the National Natural Science Foundation of China(No.51274154)the National High-tech Research and Development Program of China(863 Program)(No.2012AA03A504)Research and Development Center of Wuhan Iron and Steel(Group)Corp
文摘The industrial trials of two cooling modes, i e, water cooling in forepart + air cooling in later part (WAC) and air cooling in forepart + water cooling in later part (AWC), were carried out for a Ti- Nb microalloyed steel. The average cooling rates and coiling temperature were the same for two modes. The continuous cooling transformation (CCT) curve of the tested steel was drawn. The effects of the cooling mode on the microstructure, precipitates, and properties of the steels were investigated. Results show that the strength of the steel in the WAC mode is significantly larger than that in the AWC mode, mainly because the smaller the grain size, the more and finer the grain precipitates. Therefore, when the average cooling rate is constant, the fast cooling in the forepart is an effective method to increase the strength of steels. However, the increase in the strength is accompanied by the decrease in toughness, so that the toughness of the steel should be considered when changing the cooling mode.
文摘Aim: To study the strength and microstructure of trace-Ti-bearing stracture steel. Materials and Methods: The strength and microstructure of the trace Ti bearing structure steel were studied by two kinds of controlled cooling simulation testing results in the first stage cooling and the last stage cooling after hot press deformation in the traceTi-bearing structure steel. Results: It showed that the ferrite grain size, the relative contribution of the involved strength and the mechanical strength were influenced more or less by different cooling rates. Both the refinement of ferrite grain and the increase of mechanical strength could be obtained by the proper decrease of water cooling interruption temperature (WTI) and coiling temperature (CT) in the first stage cooling or the proper increase of water cooling beginning temperature (WTB) and proper decrease of coiling temperature (CT) in the last stage cooling. Conclusion: The strength, the ferrite grain refinement and the yield tensile ratio in the first stage cooling process are much better than those in the last stage cooling process.
基金supported by the Key Research Project of Baosteel (No. R07EBEJF40)
文摘The microstmcture and mechanical properties of SA533B low-alloy steel were investigated under different cooling and tempering conditions. Steel plates cooled at 40℃/s and 25℃/min,exibited microstructures of auto-tempered martensite and bainite, respectively. During tempering, the strength of steels quenched at the two different cooling rates decreased continuously with an increase in the tempering parameter, which is defined by T (20 + log t), where T is the temperature and t is the holding time. However, the rate of change of the strength scales with the degree to which the virgin microstructure deviates from equilibrium. The strength of the martensitic steel decreased faster and finally obtained a value close to that of the bainitic steel. The ductility and toughness gradually improved during tempering, passed through a maximum value, and finally diminished. The level of maximum toughness was also found to depend on the cooling rates of SA533B steel. The high cooling rate with a microstructure of auto-tempered martensite exhibited a larger toughness and a lower ductile-brittle transition temperature than the low cooling rate with a microstructure of bainite, because the former had finer precipitated cementite particles at quenching and a slower coarsing rate during tempering.
基金Funded by the Scientifi c and Technological Research Program of Chongqing Municipal Education Commission(No.KJ1501324)the General Project of Chongqing Frontier and Applied Basic Research Project(No.cstc2015jcyj A90005)the Research Foundation of Chongqing University of Science and Technology(Nos.CK2013Z16&CK2014Z20)
文摘We investigated phase transition and precipitation of ultra-high strength steel(UHSS)in a new "short process" with controlled rolling and controlled cooling.Thermalexpansion test combined with metallographic observation was used to research the continuous cooling transformation(CCT)curve.Moreover,the microstructuraltransformation and precipitation law was revealed by morphologicalobservation and alloying elements by electron probe micro-analyzer(EPMA).Transmission electron microscopy(TEM)was utilized to analyze the composition and grain orientation of microstructure.The study showed that the measured criticaltransformation temperatures of Ac1 and Ac3 were 746 and 868 ℃,respectively.The CCT curve indicated that the undercooled austenite was transformed into proeutectoid ferrite and bainite with HV 520 in a broad range of cooling rate 0.1^(-1) ℃·s^(-1).When subjected to a cooling rate of 1 ℃·s^(-1),the undercooled austenite was divided into small-sized blocks by formed martensite.With further increase of cooling rate,micro-hardness increased dramatically,the microstructure of specimen was mainly lathe bainite(LB),granular bainite(GB),lath martensite(LM)and residualaustenite.By diffraction test analysis,it was identified that there was K-S orientation relationship between martensite and austenite for {110}_α//{111}_γ,{111}_α//{101}_γ.EPMA clearly showed that carbon diffused adequately due to staying for a long time at high temperature with a lower cooling rate of 2 ℃·s-1.Phase transition drive force was lower and the residualaustenite existed in the block form of Martensite austenite island(M-A).With the increase of cooling rate to 10 ℃·s^(-1),the block residualaustenite reduced,the carbon content of residualaustenite increased and α phase around the residualaustenite formed into a low carbon bainite form.
文摘In order to control the ferrite and austenite percentage in duplex stainless steel welding, many researchers try to change the laser welding parameters and cooling medium, but ignore to study the influence of heat sink effect on weld strength. In this work, the effect of aluminium heat sink and varying cooling medium on the laser welding of duplex stainless steel (DSS) 2205 is studied. The 2 mm thick DSS sheets welded with pulsed Nd: YAG laser welding machine by varying the cooling medium (air and oil) and an aluminium plate used as a heat sink. The welded specimens tested for tensile strength, micro-hardness, distortion, microstructure and radiography analysis. The faster cooling rate in the oil quenching process enhances the ferrite percentage compared with air-cooled samples. But the faster cooling rate in oil quenching leads to more distortion and using aluminium as a heat sink influenced positively the distortion to a small extent. The lower cooling rate in air quenching leads to a higher tensile strength of the welded specimen. The objective of this work is to analyse experimentally the effect of cooling medium and heat sink in the mechanical and metallurgical properties of laser welded duplex stainless steel.
基金Funded by Outstanding Youth Science Foundation of Henan Province of China (No. 04120002300)
文摘Tests were carried out to study the strength deterioration of concrete cooled in air or by water after sub-high temperature at different level and varying with cycles. It is proved that the cross-shaped cracks turned up and extended little by little on the surface of specimen subjected to repeat sub-high temperature, the splitting failure is characterized by cross-shaped cracks after 30 cycles, the concrete strengths decrease rapidly at early stage and to be steady subsequently with the increase of the temperature cycles, the splitting-tensile strength is more sensitive to temperature cycles than the compressive strength, the decline of concrete strength is mainly controlled by the maximum temperature having reached, the ultrasonic velocity in concrete is also declined. On the basis of test results, the mechanisms of sub-high temperature to the strength deterioration of concrete are analyzed.The formulas for calculating the compressive and splitting-tensile strength of concrete relating to the variation of temperature are proposed.
文摘Calcite has a highly anisotropic thermal expansion coefficient, and repeated heating and cooling cycles can potentially destabilize chalks by breaking cement bonds between neighboring particles. Based on tensile strength measurements, we investigated how temperature cycles induce weakening of chalk.Tensile strength tests were performed on chalk specimens sampled from Kansas(USA) and Mons(Belgium), each with differing amounts of contact cement. Samples of the two chalk types were tested in dry and water-saturated states, and then exposed to 0, 15, and 30 temperature cycles in order to find out under what circumstances thermally induced tensile strength reduction occurs. The testing results show that the dry samples were not influenced by temperature cycling in either of the chalk types. However, in the water-saturated state, tensile strength is increasingly reduced with progressive numbers of temperature cycles for both chalk samples, especially for the more cemented Kansas chalk. The Kansas chalk demonstrated higher initial tensile strength compared to the less cemented Mons chalk, but the strength of both chalks was reduced by the same relative proportion when undergoing thermal cycles in the water-saturated state.
基金the National Natural Science Foundation of China (No.50334010).
文摘On the basis of the effect of carbon precipitation on the microstructure and properties of steel products below At temperature, a new thermal treatment method (temper-rapid cooling process) was studied. By the temper-rapid cooling process, the yield strengths of the high strength low carbon (HSLC) steel ZJ330 and SPA-H produced using the compact strip production (CSP) process increased from 340 to about 410 MPa and from 410 to about 450 MPa, respectively. The results indirectly indicated that there existed nanoscaled iron-carbon precipitates that have obvious precipitation effect on low carbon steel produced by CSP. The prospect of application is discussed.