期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Enhanced Cooling Efficiency of Urban Trees on Hotter Summer Days in 70 Cities of China
1
作者 Limei YANG Jun GE +4 位作者 Yipeng CAO Yu LIU Xing LUO Shiyao WANG Weidong GUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2259-2275,共17页
Increasing the urban tree cover percentage(TCP) is widely recognized as an efficient way to mitigate the urban heat island effect. The cooling efficiency of urban trees can be either enhanced or attenuated on hotter d... Increasing the urban tree cover percentage(TCP) is widely recognized as an efficient way to mitigate the urban heat island effect. The cooling efficiency of urban trees can be either enhanced or attenuated on hotter days, depending on the physiological response of urban trees to rising ambient temperature. However, the response of urban trees' cooling efficiency to rising urban temperature remains poorly quantified for China's cities. In this study, we quantify the response of urban trees' cooling efficiency to rising urban temperature at noontime [~1330 LT(local time), LT=UTC+8] in 17summers(June, July, and August) from 2003–19 in 70 economically developed cities of China based on satellite observations. The results show that urban trees have stronger cooling efficiency with increasing temperature, suggesting additional cooling benefits provided by urban trees on hotter days. The enhanced cooling efficiency values of urban trees range from 0.002 to 0.055℃ %-1 per 1℃ increase in temperature across the selected cities, with larger values for the lowTCP-level cities. The response is also regulated by background temperature and precipitation, as the additional cooling benefit tends to be larger in warmer and wetter cities at the same TCP level. The positive response of urban trees' cooling efficiency to rising urban temperature is explained mainly by the stronger evapotranspiration of urban trees on hotter days.These results have important implications for alleviating urban heat risk by utilizing urban trees, particularly considering that extreme hot days are becoming more frequent in cities under global warming. 展开更多
关键词 urban trees cooling efficiency China's cities EVAPOTRANSPIRATION SUMMER hot days
下载PDF
HIGH EFFICIENCY COOLING TECHNOLOGY BASED ON GREEN MANUFACTURING 被引量:1
2
作者 安庆龙 傅玉灿 +3 位作者 徐九华 王云峰 任守良 徐鸿钧 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第3期230-233,共4页
Green manufacturing (GM) and high efficiency machining technology are inevitable trends in the field of advanced manufacturing of the 21st century. To ensure green and high-efficiency machining, a new high efficienc... Green manufacturing (GM) and high efficiency machining technology are inevitable trends in the field of advanced manufacturing of the 21st century. To ensure green and high-efficiency machining, a new high efficiency cooling technology-cryogenic pneumatic mist jet impinging cooling (CPMJI) technology is presented. For obtaining the best cooling effect, a little quantity of coolant is carried by high speed cryogenic air (-20 C ) and reaches the machining zone in the form of mist jet to enhance heat transfer. Experimental results indicate that under the conditions of 40 m/s in the jet impinging speed and 10 mm in the jet impinging distance, the critical heat flux(CHF) nearly reaches 6× 10^7 W/m^2, more than six times of the CHF of the grinding burn with a value of (8~10)×10^6 W/m^2. 展开更多
关键词 high efficiency cooling mist jet impinging enhancing heat transfer critical heat flux
下载PDF
Cooling Efficiency of Laminar Cooling System for Plate Mill 被引量:5
3
作者 ZHANG Dian-hua WANG Bing-xing ZHOU Na YU Ming WANG Jun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第5期24-28,共5页
Heat transfer was researched from a perspective of the industry application. On the basis of the first law of thermodynamics, the cooling efficiency was deduced from the change of enthalpy inside hot plate. The relati... Heat transfer was researched from a perspective of the industry application. On the basis of the first law of thermodynamics, the cooling efficiency was deduced from the change of enthalpy inside hot plate. The relationship between the cooling efficiency and its influencing parameters was regressed from plenty of data collected from the worksite and discussed in detail. The temperature profiles resulting from the online model and the model modified by regressed formulas were presented and compared. The results indicated that the control accuracy of the modified model was increased obviously. 展开更多
关键词 hot rolled plate laminar cooling cooling efficiency temperature profile
原文传递
Laser Cooling Using Anti-Stokes Fluorescence in Yb^(3+)-Doped Fluorozirconate Glasses 被引量:1
4
作者 Xu Tian-ming Li Cheng-fang +1 位作者 Zhou Xiao Zhong Jia-cheng 《Wuhan University Journal of Natural Sciences》 CAS 2002年第2期177-181,共5页
The fluorozirconate glasses ZBLANP( ZrF\-4-BaF\-2-LaF\-3-AlF\-3-NaF-PbF\-2) doped with different Yb\+ 3+ concentration were prepared. The Raman spectra and absorption spectra are measured to substantiate the existenc... The fluorozirconate glasses ZBLANP( ZrF\-4-BaF\-2-LaF\-3-AlF\-3-NaF-PbF\-2) doped with different Yb\+ 3+ concentration were prepared. The Raman spectra and absorption spectra are measured to substantiate the existence of phonon-assisted emission. After analyzing the normalized absorption spectra of samples with different Yb\+ 3+-doped concentration, we calculated the maximum cooling effect in the 3 wt% Yb\+ 3+-doped sample pumped at 1 012.5 nm. The corresponding cooling capability is about -4.09 ℃/W and the cooling efficiency reaches 1.76%. 展开更多
关键词 anti-Stokes fluorescence Yb^(3+)-doped ZBLANP glass cooling efficiency
下载PDF
Numerical Simulation Study on Cooling Characteristics of a New Type of Film Hole 被引量:6
5
作者 GUO Chunhai WANG Bin +2 位作者 KANG Zhenya ZHANG Wenwu ZHENG Huilong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第1期210-219,共10页
A new type of film cooling hole with micro groove structure is presented in this paper.Based on the finite volume method and the Realizable k-εmodel,the film cooling process of the hole in a flat plate structure is s... A new type of film cooling hole with micro groove structure is presented in this paper.Based on the finite volume method and the Realizable k-εmodel,the film cooling process of the hole in a flat plate structure is simulated.The surface temperature distribution and film cooling effect of different film cooling holes were analyzed.The effects of micro-groove structure on wall attachment and cooling efficiency of jet were discussed.The results show that under the same conditions,the transverse coverage width and overall protective area of the new micro-groove holes are larger than those of the ordinary cylindrical holes and special-shaped holes.Compared with ordinary holes,the new micro-groove holes can better form the film covering on the surface and enhance the overall film cooling efficiency of the wall.For example,when the blowing ratio M=1.5,the effective coverage ratio of micro-groove holes is 1.5 times the dustpan holes and is 8 times the traditional cylindrical holes.It provides reference data and experience rules for the optimization and selection of advanced cooling structure of high performance aero-gas engine hot-end components. 展开更多
关键词 film cooling shaped hole numerical simulation optimal design cooling efficiency
原文传递
Conjugate Heat Transfer Investigation on the Cooling Performance of Air Cooled Turbine Blade with Thermal Barrier Coating 被引量:5
6
作者 JI Yongbin MA Chao +1 位作者 GE Bing ZANG Shusheng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第4期325-335,共11页
A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera.Besides,conjugate heat transfer numerical simulation is perf... A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera.Besides,conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison.The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant,and spatial difference is also discussed.Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest.The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path.Thermal barrier effects of the coating vary at different regions of the blade surface,where higher internal cooling performance exists,more effective the thermal barrier will be,which means the thermal protection effect of coatings is remarkable in these regions.At the designed mass flow ratio condition,the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface,while this value is 0.09 on the suction side. 展开更多
关键词 gas turbine blade thermal barrier coating cooling efficiency conjugate heat transfer
原文传递
Two-dimensional film cooling over a flat plate in hypersonic flow
7
作者 Ying Zhou Hong Wu +1 位作者 Yulong Li Yi Cai 《Propulsion and Power Research》 SCIE 2018年第3期205-217,共13页
Film cooling,as one efficient active cooling method,will hopefully be used in‘hypersonic vehicles’in the future.The hypersonic vehicle's surface is more likely a flat plate than a blunt body,so the cooling chara... Film cooling,as one efficient active cooling method,will hopefully be used in‘hypersonic vehicles’in the future.The hypersonic vehicle's surface is more likely a flat plate than a blunt body,so the cooling characteristics of two-dimensional(2-D)film cooling over a flat plate in hypersonic flow are studied using both theoretical analysis and numerical methods.A cooling efficiency calculation formula under a hypersonic condition is obtained and the numerical results show that it has great predicting ability.Compared with the low-speed main-flow condition,several differences exist in the hypersonic main-flow condition.A parameter called the‘generalized turbulent mixing coefficient’is introduced and its approximate value range is given based on numerical results. 展开更多
关键词 Film cooling Hypersonic vehicle Space technology Numerical simulation cooling efficiency
原文传递
Bending performance analysis on YBCO cable with high flexibility
8
作者 Huan Jin Qiong Wu +5 位作者 Guanyu Xiao Chao Zhou Haihong Liu Yunfei Tan Fang Liu Jinggang Qin 《Superconductivity》 2023年第3期27-33,共7页
In order to utilize high‐temperature superconducting Yttrium Barium Copper Oxide(YBCO)tapes to develop superconducting cables for high magnet field applications,it is critical to ensure the stable operation of the YB... In order to utilize high‐temperature superconducting Yttrium Barium Copper Oxide(YBCO)tapes to develop superconducting cables for high magnet field applications,it is critical to ensure the stable operation of the YBCO cable under challenging mechanical and thermal conditions.A new type of cable featuring the winding of YBCO and copper tapes around a spiral stainless steel tube has been proposed to increase flexibility and cooling.Experiments are performed to confirm that its critical current varies with the bending diameter.The cables wound with nine YBCO tapes in three layers show a critical current degradation of less than 5%for a bending diameter of 30 mm.The performance of the cable degrades as the number of wound layers increases.The critical current degradation of cable specimens wound from 15 tapes in five layers reached approximately 12%for a bending diameter of 30 mm.In addition,when compared to traditional CORC cable specimens,the developed cable specimens show better‐bending flexibility and achieve a lower critical bending diameter.The finite element models show that the higher elasticity coefficient and lower plasticity of the stainless steel spiral tube results in a lower strain on the YBCO tapes of the HFRC cable than that of the CORC cable,and the maximum strain on the YBCO tapes of the HFRC cable was only about 10%of that of the CORC cable.Therefore,it is less likely that the YBCO tape in this type of cable will reach the irreversible strain limit during bending,resulting in a degradation in current carrying performance.Furthermore,the cooling efficiency can be improved by flowing the cooling medium inside the central core,which can significantly improve its thermal stability.These advantages indicate the possibility of using it in future high‐field magnets with high current carrying capacity at fields greater than 15 T. 展开更多
关键词 YBCO cable FLEXIBILITY Bending performance cooling efficiency
原文传递
Thermal Management of Electrified Propulsion System for Low-Carbon Vehicles 被引量:1
9
作者 Bo Li Huang Kuo +6 位作者 Xuehui Wang Yiyi Chen Yangang Wang David Gerada Sean Worall Ian Stone Yuying Yan 《Automotive Innovation》 CSCD 2020年第4期299-316,共18页
An overview of current thermal challenges in transport electrification is introduced in order to underpin the research developments and trends of recent thermal management techniques.Currently,explorations of intellig... An overview of current thermal challenges in transport electrification is introduced in order to underpin the research developments and trends of recent thermal management techniques.Currently,explorations of intelligent thermal management and control strategies prevail among car manufacturers in the context of climate change and global warming impacts.Therefore,major cutting-edge systematic approaches in electrified powertrain are summarized in the first place.In particular,the important role of heating,ventilation and air-condition system(HVAC)is emphasised.The trends in developing efficient HVAC system for future electrified powertrain are analysed.Then electric machine efficiency is under spotlight which could be improved by introducing new thermal management techniques and strengthening the efforts of driveline integrations.The demanded integration efforts are expected to provide better value per volume,or more power output/torque per unit with smaller form factor.Driven by demands,major thermal issues of high-power density machines are raised including the comprehensive understanding of thermal path,and multiphysics challenges are addressed whilst embedding power electronic semiconductors,non-isotropic electromagnetic materials and thermal insulation materials.Last but not least,the present review has listed several typical cooling techniques such as liquid cooling jacket,impingement/spray cooling and immersion cooling that could be applied to facilitate the development of integrated electric machine,and a mechanic-electric-thermal holistic approach is suggested at early design phase.Conclusively,a brief summary of the emerging new cooling techniques is presented and the keys to a successful integration are concluded. 展开更多
关键词 Thermal management Electrified powertrain Efficient cooling and heating Electric machine and control High power electronics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部