The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evoluti...The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity.展开更多
On the basis of accelerator mass spectrometer radiocarbon (AMS ^14C) dating, sedimentation rates of 11 cores collected from the northern to southern Okinawa Trough are discussed. The sedimentation rates in the Okina...On the basis of accelerator mass spectrometer radiocarbon (AMS ^14C) dating, sedimentation rates of 11 cores collected from the northern to southern Okinawa Trough are discussed. The sedimentation rates in the Okinawa Trough roughly range from 11 to 39cm/ka, and the average is 23.0cm/ka. China's continental matter is the main sediment source of the middle Okinawa Trough and has important contribution to the northern and southern Okinawa Trough. The sedimentation rates during the marine oxygen isotope (MIS) 2 are uniformly higher than those during MIS 1 in the northern and middle Okinawa Trough while they are on the contrary in the southern Okinawa Trough. Sedimentation rates in the Okinawa Trough can be one of the proxies of sediment source and an indicator of cooling events.展开更多
The high-resolution quantitative analysis of the planktonic foraminifera and the δ18O records of the section between 96.49– 137.6 mcd at ODP Site 1144 on the continental slope of northern South China Sea reveals an ...The high-resolution quantitative analysis of the planktonic foraminifera and the δ18O records of the section between 96.49– 137.6 mcd at ODP Site 1144 on the continental slope of northern South China Sea reveals an abrupt cooling event of sea surface temperature (SST) during the last interglacial (MIS 5.5, i.e. 5e). The dropping range of the winter SST may come to 7.5°C corresponding to 1.2‰ of the δ18O value of sea surface water. This event is comparable with those discovered in the west Europe and the northern Atlantic Ocean, but expressed in a more intensive way. It is inferred that this event may have been induced by middle- to low-latitude processes rather than by polar ice sheet change. Since the Kuroshio-index speciesPulleniatina obliquiloculata displayed the most distinct change at the event, it may also be related to the paleoceanographic change of the low-latitude area in the western Pacific Ocean. This event can be considered as one of “Younger Dryas-style coolings” and is indicative of climate variability of the last interglacial stage.展开更多
The impact of the boreal summer intraseasonal oscillation (BSISO) on extreme hot and cool events was investig-ated, by analyzing the observed and reanalysis data for the period from 1983 to 2012. It is found that th...The impact of the boreal summer intraseasonal oscillation (BSISO) on extreme hot and cool events was investig-ated, by analyzing the observed and reanalysis data for the period from 1983 to 2012. It is found that the frequency of the extreme events in middle and high latitudes is significantly modulated by the BSISO convection in the tropics, with a 3-9-day lag. During phases 1 and 2 when the BSISO positive rainfall anomaly is primarily located over a northwest-southeast oriented belt extending from India to Maritime Continent and a negative rainfall anomaly ap- pears in western North Pacific, the frequency of extreme hot events is 40% more than the frequency of non-extreme hot events. Most noticeable increase appears in midlatitude North Pacific (north of 40°N) and higher-latitude polar region. Two physical mechanisms are primarily responsible for the change of the extreme frequency. First, an upper-tropo-spheric Rossby wave train (due to the wave energy propagation) is generated in response to a negative heating anom-aly over tropical western North Pacific in phases 1 and 2. This wave train consists of a strong high pressure anomaly center northeast of Japan, a weak low pressure anomaly center over Alaska, and a strong high pressure anomaly cen-ter over the western coast of United States. Easterly anomalies to the south of the two strong midlatitude high pres-sure centers weaken the climatological subtropical jet along 40°N, which is accompanied by anomalous subsidence and warming in North Pacific north of 40°N. Second, an enhanced monsoonal heating over South Asia and East Asia sets up a transverse monsoonal overturning circulation, with large-scale ascending (descending) anomalies over trop-ical Indian (Pacific) Ocean. Both the processes favor more frequent extreme hot events in higher-latitude Northern Hemisphere. An anomalous atmospheric general circulation model is used to confirm the tropical heating effect.展开更多
基金This study is financially supported by the National Natural Science Foundation of China(42072181).
文摘The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity.
基金This study was supported by the National Natural Science Foundation of China under contract Nos 40176018,40421150011 and 49776292the Ministry of Science and Technology,State Oceanic Administration,China,and IFR EMER,France.
文摘On the basis of accelerator mass spectrometer radiocarbon (AMS ^14C) dating, sedimentation rates of 11 cores collected from the northern to southern Okinawa Trough are discussed. The sedimentation rates in the Okinawa Trough roughly range from 11 to 39cm/ka, and the average is 23.0cm/ka. China's continental matter is the main sediment source of the middle Okinawa Trough and has important contribution to the northern and southern Okinawa Trough. The sedimentation rates during the marine oxygen isotope (MIS) 2 are uniformly higher than those during MIS 1 in the northern and middle Okinawa Trough while they are on the contrary in the southern Okinawa Trough. Sedimentation rates in the Okinawa Trough can be one of the proxies of sediment source and an indicator of cooling events.
基金the National Natural Science Foundation of China (Grant No. 4999560).
文摘The high-resolution quantitative analysis of the planktonic foraminifera and the δ18O records of the section between 96.49– 137.6 mcd at ODP Site 1144 on the continental slope of northern South China Sea reveals an abrupt cooling event of sea surface temperature (SST) during the last interglacial (MIS 5.5, i.e. 5e). The dropping range of the winter SST may come to 7.5°C corresponding to 1.2‰ of the δ18O value of sea surface water. This event is comparable with those discovered in the west Europe and the northern Atlantic Ocean, but expressed in a more intensive way. It is inferred that this event may have been induced by middle- to low-latitude processes rather than by polar ice sheet change. Since the Kuroshio-index speciesPulleniatina obliquiloculata displayed the most distinct change at the event, it may also be related to the paleoceanographic change of the low-latitude area in the western Pacific Ocean. This event can be considered as one of “Younger Dryas-style coolings” and is indicative of climate variability of the last interglacial stage.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2017YFA0603802 and 2015CB453200)National Natural Science Foundation of China(41630423,41475084,41575043,and 41375095)+6 种基金US National Science Foundation(AGS-1643297)Jiangsu Province Projects of China(BK20150062 and R2014SCT001)US National Research Council(N00173-16-1-G906)China Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)SOEST contribution number 10418IPRC contribution number 1330ESMC contribution 216
文摘The impact of the boreal summer intraseasonal oscillation (BSISO) on extreme hot and cool events was investig-ated, by analyzing the observed and reanalysis data for the period from 1983 to 2012. It is found that the frequency of the extreme events in middle and high latitudes is significantly modulated by the BSISO convection in the tropics, with a 3-9-day lag. During phases 1 and 2 when the BSISO positive rainfall anomaly is primarily located over a northwest-southeast oriented belt extending from India to Maritime Continent and a negative rainfall anomaly ap- pears in western North Pacific, the frequency of extreme hot events is 40% more than the frequency of non-extreme hot events. Most noticeable increase appears in midlatitude North Pacific (north of 40°N) and higher-latitude polar region. Two physical mechanisms are primarily responsible for the change of the extreme frequency. First, an upper-tropo-spheric Rossby wave train (due to the wave energy propagation) is generated in response to a negative heating anom-aly over tropical western North Pacific in phases 1 and 2. This wave train consists of a strong high pressure anomaly center northeast of Japan, a weak low pressure anomaly center over Alaska, and a strong high pressure anomaly cen-ter over the western coast of United States. Easterly anomalies to the south of the two strong midlatitude high pres-sure centers weaken the climatological subtropical jet along 40°N, which is accompanied by anomalous subsidence and warming in North Pacific north of 40°N. Second, an enhanced monsoonal heating over South Asia and East Asia sets up a transverse monsoonal overturning circulation, with large-scale ascending (descending) anomalies over trop-ical Indian (Pacific) Ocean. Both the processes favor more frequent extreme hot events in higher-latitude Northern Hemisphere. An anomalous atmospheric general circulation model is used to confirm the tropical heating effect.