With the development of aviation electrification,higher demands for electrical machines are put forward in aircraft electric propulsion systems.The aircraft electric propulsion requirements and propulsion motor featur...With the development of aviation electrification,higher demands for electrical machines are put forward in aircraft electric propulsion systems.The aircraft electric propulsion requirements and propulsion motor features are analyzed in this paper.Comparing with conventional PM machines,ironless stator axial flux permanent magnet(AFPM)machine topologies with Litz wire windings allow designs with higher compactness,lightness and efficiency,which are suitable for high-frequency and high-power density applications.Based on the motor requirements and constraints of aircraft electric propulsion systems,this paper investigates a high-power 1 MW multi-stack ironless stator AFPM machine,which is composed of four 250kW modular motors by stacking in axial.The design guidelines and special attentions are presented,in term of electromagnetic,thermal,and mechanical performance for the high-frequency coils and Halbach-array PM rotor.Finally,an ironless stator AFPM motor is manufactured,tested and evaluated with the consideration of cost and processing cycle.The results show that the output power is up to 53.8kW with 95%efficiency at 9000r/min at this stage.The proposed ironless stator AFPM machine with oil immersed forced cooling proves to be a favorable candidate for application in electric aircraft as propulsion motors.展开更多
Comparative experiments of oil and water-cooling were performed on a 4-cylinder automotive gasoline engine and a single-cylinder direct injection Diesel engine. Measurements were made to investigate the variation of f...Comparative experiments of oil and water-cooling were performed on a 4-cylinder automotive gasoline engine and a single-cylinder direct injection Diesel engine. Measurements were made to investigate the variation of fuel consumption, combustor wall temperature and engine emissions (HC, CO, NOx and smoke) with two cooling media at steady-state conditions. Significant improvement of fuel economy was found mainly at partial load conditions with oil-cooling in comparison with the baseline waer-cooling both for the two engines. The experimental results also showed general trend of reduction in engine emissions using oil as the coolant. Measurements of wall temperature demonstrated that oil-cooling resulted in considerable increase of the combustor wall temperature and reduce of warmup period in starting process. For automotive gasoline engine, road tests indicated the same trend of fUel economy improvement with oil-cooling. The performance of the automotive oil-cooled engine was fUrther improved by internal cooling with water or methanol injection.展开更多
To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace app...To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace applications.The hybrid cooling structure with oil circulation in the housing,oil spray at winding ends and rotor end surface is firstly proposed for the PMa Syn R S/G.Then the accurate loss calculation of the PMa Syn R S/G is proposed,which includes air gap friction loss under oil spray cooling,copper loss,stator and rotor core loss,permanent magnet eddy current loss and bearing loss.The parameter sensitivity analysis of the hybrid cooling structure is proposed,while the equivalent thermal network model of the PMa Syn R S/G is established considering the uneven spraying at the winding ends.Finally,the effectiveness of the proposed hybrid cooling method is demonstrated on a 40 k W/24000 r/min PMa Syn R S/G experimental platform.展开更多
基金This work was supported in part by National Natural Science Foundation for Excellent Young Scholar of China under Award 51622704,in part by Jiangsu provincial key research and development project under Award BE2017160。
文摘With the development of aviation electrification,higher demands for electrical machines are put forward in aircraft electric propulsion systems.The aircraft electric propulsion requirements and propulsion motor features are analyzed in this paper.Comparing with conventional PM machines,ironless stator axial flux permanent magnet(AFPM)machine topologies with Litz wire windings allow designs with higher compactness,lightness and efficiency,which are suitable for high-frequency and high-power density applications.Based on the motor requirements and constraints of aircraft electric propulsion systems,this paper investigates a high-power 1 MW multi-stack ironless stator AFPM machine,which is composed of four 250kW modular motors by stacking in axial.The design guidelines and special attentions are presented,in term of electromagnetic,thermal,and mechanical performance for the high-frequency coils and Halbach-array PM rotor.Finally,an ironless stator AFPM motor is manufactured,tested and evaluated with the consideration of cost and processing cycle.The results show that the output power is up to 53.8kW with 95%efficiency at 9000r/min at this stage.The proposed ironless stator AFPM machine with oil immersed forced cooling proves to be a favorable candidate for application in electric aircraft as propulsion motors.
文摘Comparative experiments of oil and water-cooling were performed on a 4-cylinder automotive gasoline engine and a single-cylinder direct injection Diesel engine. Measurements were made to investigate the variation of fuel consumption, combustor wall temperature and engine emissions (HC, CO, NOx and smoke) with two cooling media at steady-state conditions. Significant improvement of fuel economy was found mainly at partial load conditions with oil-cooling in comparison with the baseline waer-cooling both for the two engines. The experimental results also showed general trend of reduction in engine emissions using oil as the coolant. Measurements of wall temperature demonstrated that oil-cooling resulted in considerable increase of the combustor wall temperature and reduce of warmup period in starting process. For automotive gasoline engine, road tests indicated the same trend of fUel economy improvement with oil-cooling. The performance of the automotive oil-cooled engine was fUrther improved by internal cooling with water or methanol injection.
基金co-supported by the National Natural Science Foundation of China(No.52177028)in part by the Aeronautical Science Foundation of China(No.201907051002)。
文摘To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace applications.The hybrid cooling structure with oil circulation in the housing,oil spray at winding ends and rotor end surface is firstly proposed for the PMa Syn R S/G.Then the accurate loss calculation of the PMa Syn R S/G is proposed,which includes air gap friction loss under oil spray cooling,copper loss,stator and rotor core loss,permanent magnet eddy current loss and bearing loss.The parameter sensitivity analysis of the hybrid cooling structure is proposed,while the equivalent thermal network model of the PMa Syn R S/G is established considering the uneven spraying at the winding ends.Finally,the effectiveness of the proposed hybrid cooling method is demonstrated on a 40 k W/24000 r/min PMa Syn R S/G experimental platform.