The co-doping of iron and cerium into TiO2 was studied by means of X-ray diffraction, Raman spectroscopy, UV Vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy, when separately doping via the so...The co-doping of iron and cerium into TiO2 was studied by means of X-ray diffraction, Raman spectroscopy, UV Vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy, when separately doping via the sol-gel method, iron was introduced in the fralnework of anatase TiO2 whereas cerium was not; interestingly, both iron and cerium were introduced in tile framework when co-doping by the sol-gel method. The co-doped TiO2 behaves much more intense surface hydroxyl concentration than the separately-doped and pure TiO2. This observation demonstrates for the first time a cooperative effect in the co-doping of transitional metals in the framework of TiO2.展开更多
Aqueous zinc ion batteries have high potential applicability for energy storage due to their reliable safety,environmental friendliness,and low cost.However,the freezing of aqueous electrolytes limits the normal opera...Aqueous zinc ion batteries have high potential applicability for energy storage due to their reliable safety,environmental friendliness,and low cost.However,the freezing of aqueous electrolytes limits the normal operation of batteries at low temperatures.Herein,a series of high-performance and low-cost chloride hydrogel electrolytes with high concentrations and low freezing points are developed.The electrochemical windows of the chloride hydrogel electrolytes are enlarged by>1 V under cryogenic conditions due to the obvious evolution of hydrogen bonds,which highly facilitates the operation of electrolytes at ultralow temperatures,as evidenced by the low-temperature Raman spectroscopy and linear scanning voltammetry.Based on the Hofmeister effect,the hydrogen-bond network of the cooperative chloride hydrogel electrolyte comprising 3 M ZnCl_(2)and 6 M LiCl can be strongly interrupted,thus exhibiting a sufficient ionic conductivity of 1.14 mS cm;and a low activation energy of 0.21 e V at-50℃.This superior electrolyte endows a polyaniline/Zn battery with a remarkable discharge specific capacity of 96.5 mAh g;at-50℃,while the capacity retention remains~100%after 2000 cycles.These results will broaden the basic understanding of chloride hydrogel electrolytes and provide new insights into the development of ultralow-temperature aqueous batteries.展开更多
The adsorption behaviors of 1-naphthol, 1-naphthylamine and l-naphthol/l-naphthylamine mixtures in water over two macroreticular adsorbents were investigated in single or binary batch systems at 293 K, 303 K and 313 K...The adsorption behaviors of 1-naphthol, 1-naphthylamine and l-naphthol/l-naphthylamine mixtures in water over two macroreticular adsorbents were investigated in single or binary batch systems at 293 K, 303 K and 313 K respectively. All the adsorption isotherms in the studied systems can be adequately fitted by Langmuir model. In the case of aminated macroreticular adsorbent NDA103, 1-naphthol is adsorbed to a larger extent than 1-naphthylamine; while, the opposite trend is found for nonpolar macroreticular adsorbent NDA100. It is noteworthy that at higher temperature(303 K and 313 K), the total uptake amounts of 1-naphthol and 1-naphthylamine in all binary-component systems are obvious larger than the pure uptake amounts in single-component systems, which is presumably due to the cooperative effect primarily arisen from the hydrogen-bonding interaction between the loaded 1-naphthol and 1-naphthylamine molecules. The simultaneous adsorption systems were confirmed to be helpful to the selective adsorption towards 1-naphthol according to the larger selective index.展开更多
In this contribution,we report the cooperative structure-directing effect of choline hydroxide and aluminosilicate*BEA zeolite in the synthesis of aluminogermanosilicate IWR zeolites for the first time.*BEA zeolites,a...In this contribution,we report the cooperative structure-directing effect of choline hydroxide and aluminosilicate*BEA zeolite in the synthesis of aluminogermanosilicate IWR zeolites for the first time.*BEA zeolites,at variance with any other aluminosilicate zeolites,can serve as heterogeneous seeds for the growth of IWR zeolites and play a cooperative structure-directing role.The crystallization process was investigated using multiple techniques to characterize a series of solid products obtained with various crystallization times.The experiments clearly showed the dissolution of the*BEA zeolite and of an intermediate CDO-type structure.A plausible mechanism for the novel cooperative synthesis has been proposed.The crystallization of the IWR zeolite involves several steps,among which the crucial one is believed to be the reassembly of the building units produced from the decomposition of*BEA zeolite seeds,induced by choline molecules.Having similar structure and common building units(four-,five-,and six-membered rings)with the IWR zeolite,the*BEA zeolite is capable of promoting the reassembly of the building units and can thus play a cooperative structure-directing role.By highlighting the cooperative structure-directing effect of organic molecules and heterogeneous seeds,this study opens up new perspectives for the synthesis of target zeolites that are difficult to prepare by traditional methods.This new synthetic route is also expected to shed light on the discovery of novel zeolites.展开更多
Molecular dynamics method was employed to study the binding energies of the selected crystal planes of the 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane(HMX)/1,3-dimethyl-2-imidazolidinone(DMI) cocrystal in differ...Molecular dynamics method was employed to study the binding energies of the selected crystal planes of the 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane(HMX)/1,3-dimethyl-2-imidazolidinone(DMI) cocrystal in different molecular molar ratios. The mechanical properties were estimated in different molar ratios. Solvent effects were evaluated and the cooperativity effects were discussed in the HMX···HF···DMI ternary by using the M06-2x/6-311+G(2df,2p) and MP2(full)/6-311+G(2df,2p) methods. The results indicate that the substituted patterns(020) and(100) own the highest binding energies. The stabilities of cocrystals in the 1:1 and 2:1 ratios are the greatest, and thus the HMX/DMI cocrystals prefer cocrystallizing in the 1:1 and 2:1 molar ratios, which have good mechanical properties. The sensitivity change of cocrystal originates from not only the formation of intermolecular interaction but also the increment of bond dissociation energy of the N–NO2 bond. The cooperativity effect appears in the linear complex while the anti-cooperativity effect is found in the cyclic system. DMI binding to HMX is not energetically and structurally favored in the presence of HF. This is perhaps the reason that the solvent with large dielectric constant weakens the stability of the HMX/DMI cocrystals. Therefore, the solvents with low dielectric constants should be chosen in the preparation of HMX/DMI cocrystals.展开更多
The influences of various kinds of UV-absorbers, antioxidants and their mixtures on UV-aging resis- tance of transparent unsaturated polyester FRP are studied by artificial aocelerating aging test.The results show tha...The influences of various kinds of UV-absorbers, antioxidants and their mixtures on UV-aging resis- tance of transparent unsaturated polyester FRP are studied by artificial aocelerating aging test.The results show that the UV-aging resistance of com- bined stabilizers is better than single stabilizer. It is concluded that the cooperative effect of UV -absorbers is caused bg the increase of wave leng- th and intensity of the absorption light the coopora- tive effect of UV-absorbers and antioxidants is caused by Dreventing the photo-oxidantion.展开更多
The bare amorphous Al_(2)O_(3)-AlPO_(4)and Cs/Al_(2)O_(3)-AlPO_(4)catalysts were developed for the aldol condensation of methyl acetate with formaldehyde to methyl acrylate.The structure and property of catalyst were ...The bare amorphous Al_(2)O_(3)-AlPO_(4)and Cs/Al_(2)O_(3)-AlPO_(4)catalysts were developed for the aldol condensation of methyl acetate with formaldehyde to methyl acrylate.The structure and property of catalyst were characterized by XRD,XPS,BET,Pyridine-IR,FT-IR,^(27)Al-MASNMR,NH_(3)-/CO_(2)-TPD and SEM.The correlation between structural features and acid-base properties was established,and the loading effect of the cesium species was investigated.Due to cooperative catalytic effects between the penta-coordinated Al and Al_(2)O_(3),the weak-Ⅱacid and medium acid site densities and the product selectivity were improved.While the basic site densities of these catalysts were almost in proportion to the conversion of methyl acetate.The loaded Cs could form new basic sites and change the distribution of acid sites which further enhance the catalytic performance.As a result,the 10Cs/8AlP was proved to be an optimal catalyst with the yield and selectivity of 21.2%and 85%for methyl acrylate respectively.During the reaction,a deactivation behavior was observed on 10Cs/8AlP catalyst due to the carbon deposition,however,it could be regenerated by thermal treatment in the air atmosphere at 400℃.展开更多
In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, doe...In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper.展开更多
Fluoroacetate dehalogenases(FAcD),a homodimeric enzyme,catalyzes the conversion of fluoroacetic acid to glycolic acid(GoA).It has been proved that the enzyme has a half-of-the-site reactivity.Namely,its catalytic(C)su...Fluoroacetate dehalogenases(FAcD),a homodimeric enzyme,catalyzes the conversion of fluoroacetic acid to glycolic acid(GoA).It has been proved that the enzyme has a half-of-the-site reactivity.Namely,its catalytic(C)subunit converts the first substrate to a covalent intermediate;then,the non-catalytic(NC)subunit binds a second substrate and promotes the conversion of the intermediate in the C subunit into the final product.After the release of the product,the C subunit becomes the NC subunit,and the previous NC subunit becomes the C subunit.To elucidate the detailed mechanism behind this cooperative catalysis,we have conducted microsecond-scale MD simulations along the reaction pathway.The simulations indicate that the substrate in the NC subunit induces W185 and Y141 adopting an open conformation in the C subunit.The opening of W185(C)facilitates the entry of catalytic water,enhancing the catalytic activity for product formation,while the opening of Y141(C)creates an unfavorable environment for product binding,promoting its release.An interaction network analysis reveals that the substrate in the NC subunit can induce conformational changes through a conserved water chain at the interface.展开更多
Photoluminescence(PL)mechanisms of nontraditional luminogens(NTLs)have attracted great interest,and they are generally explained with intra/intermolecular through-space conjugation(TSC)of nonconventional chromophores....Photoluminescence(PL)mechanisms of nontraditional luminogens(NTLs)have attracted great interest,and they are generally explained with intra/intermolecular through-space conjugation(TSC)of nonconventional chromophores.Here a new concept of nonaromatic through-bond conjugation(TBC)is proposed and it is proved that it plays an important role in the PL of NTLs.The PL behaviors of the three respective isomers of cyclohexanedione and gemdimethyl-1,3-cyclohexanedione were studied and correlated with their chemical and aggregate structures.These compounds show differentfluorescence emissions as well as dif-ferent concentration,excitation and solvent-dependent emissions.The compounds which undergo keto-enol tautomerism and hence with a conjugated ketone-enol structure(i.e.,nonaromatic TBC)show more red-shifted emissions.TBC effect reduces the energy gaps and facilitates the formation of stronger TSC in the aggre-gate state.The compounds in the ketone-enol form are also prone to occur excited state intra/intermolecular proton transfer(ESIPT).The cooperative effect of nonaro-matic TBC and TSC determines the PL behaviors of NTLs.This work provides a novel understanding of the PL mechanisms of NTLs and is of great importance for directing the design and synthesis of novel NTLs.展开更多
Human factors engineering and quality management are different research branches in the field of industrial engineering.A basis for interaction based on the concepts and techniques of human factors engineering and qua...Human factors engineering and quality management are different research branches in the field of industrial engineering.A basis for interaction based on the concepts and techniques of human factors engineering and quality management with some practical examples of cooperative effect is defined in this paper.The specific challenges about the quality management in manufacturing and service are presented to demonstrate that the human factors analysis of quality problems leads to new tends for integrated development.展开更多
The chemical transformation of CO2under mild conditions remains a great challenge because of itsexceptional kinetic and thermodynamic stability.Two important reactions in the transformation ofCO2are the N‐formylation...The chemical transformation of CO2under mild conditions remains a great challenge because of itsexceptional kinetic and thermodynamic stability.Two important reactions in the transformation ofCO2are the N‐formylation reaction of amines using hydrosilanes and CO2,and the cycloaddition ofCO2to epoxides.Here,we report the high efficiency of bifunctional metallosalen complexes bearingquaternary phosphonium salts in catalyzing both of these reactions under solvent‐free,mild conditionswithout the need for co‐catalysts.The catalysts’bifunctionality is attributed to an intramolecularcooperative process between the metal center and the halogen anion.Depending on the reaction,this activates CO2by permitting either the synergistic activation of Si–H bond via metal–hydrogen coordinative bond(M–H)or the dual activation of epoxide via metal–oxygen coordinativebond(M–O).The one‐component catalysts are also shown to be easily recovered and reusedfive times without significant loss of activity or selectivity.The current results are combined withprevious work in the area to propose the relevant reaction mechanisms.展开更多
The combination of a zinc phthalocyanine(ZnPc)catalyst and a stoichiometric amount of dimethyl formamide(DMF)provided a simple route to formamide derivatives from amines,CO2,and hydrosilanes under mild conditions.We d...The combination of a zinc phthalocyanine(ZnPc)catalyst and a stoichiometric amount of dimethyl formamide(DMF)provided a simple route to formamide derivatives from amines,CO2,and hydrosilanes under mild conditions.We deduced that formation of an active zinc‐hydrogen(Zn‐H)species promoted hydride transfer from the hydrosilane to CO2.The cooperative activation of the Lewis acidic ZnPc by strongly polar DMF,led to formation of activated amines and hydrosilanes,which promoted the chemical reduction of CO2.Consequently,the binary ZnPc/DMF catalytic system showed excellent yields and superior chemoselectivity,representing a simple and sustainable pathway for the reductive transformation of CO2into valuable chemicals as an alternative to conventional halogen‐containing process.展开更多
A rational integration of multiple reactive centers into a combined unit to facilitate their cooperative effects is a smart approach for accelerating the catalytic activity.Here,to achieve this goal,linear imidazolium...A rational integration of multiple reactive centers into a combined unit to facilitate their cooperative effects is a smart approach for accelerating the catalytic activity.Here,to achieve this goal,linear imidazolium-based ionic polymers were confined into the nanopores of mesoporous silica nanospheres anchored with homogeneously distributed zinc salts.Owing to the flexible character and the reinforced cooperative effects of the ionic liquid(nucleophile)and zinc species(Lewis acid)in the confined mesoporous structure,the resultant composite exhibited dramatically improved catalytic performance in the cycloaddition of CO2 with epoxides to form cyclic carbonates.This was in contrast to that observed for the individual catalytic components.Moreover,such a solid catalyst could be easily recovered and reused four times without a significant loss of activity.展开更多
In the present study, we have investigated the reducibility of CuO species on CuO-CeO2 catalysts and the influence of CuO species on the catalytic performance for CO preferential oxidation (CO PROX) in excess hydrog...In the present study, we have investigated the reducibility of CuO species on CuO-CeO2 catalysts and the influence of CuO species on the catalytic performance for CO preferential oxidation (CO PROX) in excess hydrogen. It is revealed that the smaller the difference of reduction temperature (denoted as ?T) for two adjacent CuO species is, the higher the catalytic activity of CuO-CeO2 for the PROX in excess hydrogen may be obtained. It means that if the reduction energy of Cu0-Cu2+ pairs matched better, the reduction-oxidation recycle of Cu0-Cu2+ pairs would go on more easily, then the transferring energy of Cu0-Cu2+ pairs would be lesser. Therefore, the CuO-CeO2 catalysts will be largely improved in their catalytic performance if the different CuO species on the catalysts have matched the reduction energy, which would allows them to cooperate effectively.展开更多
Limited by the shuttle effect, the application of lithium-sulfur batteries is not impressive. As an organ layered two-dimensional(2D) material, MXene has a great electrical conductivity and high specific surface area....Limited by the shuttle effect, the application of lithium-sulfur batteries is not impressive. As an organ layered two-dimensional(2D) material, MXene has a great electrical conductivity and high specific surface area. Meanwhile, the introduction of metal oxides can restrain the shuttle effect. Hence, this paper prepared CeO_(2)/MXene as a cathode material of Li-S batteries. Ce and Ti can chemically adsorb S, and the interlayer structure of MXene can limit S while the interlayer space can alleviate volume expansion.The discharge capacity at 0.5 C is as high as 1051.1 m Ah g^(-1), and 921.9 m Ah g^(-1) after 200 cycles. The average coulombic efficiency is 97.75%. The organized MXene with CeO_(2) like notes in accordions are new efficient materials for lithium-sulfur batteries.展开更多
The binary adsorption behavior of 1-naphthol/1-naphthylamine mixtures in water on nonpolar adsorbent Amberlite XAD4 was investigated at 293 K, 303 K and 313 K, respectively. The experimental uptakes of 1-naphthol and ...The binary adsorption behavior of 1-naphthol/1-naphthylamine mixtures in water on nonpolar adsorbent Amberlite XAD4 was investigated at 293 K, 303 K and 313 K, respectively. The experimental uptakes of 1-naphthol and 1-naphthylamine in all binary-component systems of different molar ratios were obviously higher than the corresponding uptakes predicted by the extended Langmuir model, assuming no interaction between the adsorbed molecules of the two components. This phenomenon was attributed to the cooperative adsorption effect arising from the hydrogen bonding interaction between 1-naphthol and 1-naphthylamine molecules. A modified extended Langmuir model was proposed to describe the binary adsorption behavior by means of introducing a fitting parameter related with the cooperative adsorption effect of the adsorbates.展开更多
Thermodynamic data were determined for the reversible binding of O 2 to two compounds of dicobalt(II) di(meso tetra phenyl)porphyrin derivatives with different lengths of diamidoaliphatic bridge (abbreviated to Co ...Thermodynamic data were determined for the reversible binding of O 2 to two compounds of dicobalt(II) di(meso tetra phenyl)porphyrin derivatives with different lengths of diamidoaliphatic bridge (abbreviated to Co 2PP 8 and Co 2PP 4) in N,N dimethylformamide at room temperature. The partial pressure of dioxygen necessary for half oxygenation ( P 1/2 ) and Hill coefficient ( n ) at 298 K were determined as follows: P 1/2 =54.2 kPa, n =2.0 for Co 2PP 8 and P 1/2 =6.8 kPa, n =1.8 for Co 2PP 4,respectively. The rate equations of reversible oxygen binding by Co 2PP 8 were determined and the reaction path was proposed. The results of thermodynamic and kinetic studies indicate that there exists strong cooperative effect during oxygenation of the compounds. The ESR observation reveals that the dioxygen complexes formed in the solutions are of superoxo (Co O - 2) type.展开更多
The cooperative effect plays a significant role in understanding the intermolecular donor-acceptor interactions of hydrogen bonds(H-bonds, D-H···A). Here, using the coupled-cluster singles and doubles w...The cooperative effect plays a significant role in understanding the intermolecular donor-acceptor interactions of hydrogen bonds(H-bonds, D-H···A). Here, using the coupled-cluster singles and doubles with perturbative triple excitations(CCSD(T)) method of high-precision ab initio calculations, we show that the intermolecular H-bonded systems with different D and A atoms reproduce the structural changes predicted by the well-known cooperative effect upon intermolecular compression. That is, with decreasing intermolecular distance, the D-H bond length first increases and then decreases, while the H···A distance decreases. On the contrary, when D and A are the same, as the intermolecular distance decreases, the D-H bond length decreases without increasing. This obvious difference means that the cooperative effect may not be generally characterized by intermolecular compression. Interestingly, further analyses of many intermolecular systems confirm that this failure has boundaries, i.e., cooperative systems at their respective equilibrium positions have a smaller core-valence bifurcation(CVB) index(<0.022) and stronger binding energies(>0.25 eV), showing a clear linear inverse relationship related to H-bond strength. These findings provide an important reference for the comprehensive understanding of H-bonds and its calculation methods.展开更多
文摘The co-doping of iron and cerium into TiO2 was studied by means of X-ray diffraction, Raman spectroscopy, UV Vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy, when separately doping via the sol-gel method, iron was introduced in the fralnework of anatase TiO2 whereas cerium was not; interestingly, both iron and cerium were introduced in tile framework when co-doping by the sol-gel method. The co-doped TiO2 behaves much more intense surface hydroxyl concentration than the separately-doped and pure TiO2. This observation demonstrates for the first time a cooperative effect in the co-doping of transitional metals in the framework of TiO2.
基金We acknowledge the financial support from the National Natural Science Foundation of China(NSFC)(21875055 and 21674031)the Natural Science Foundation of Guangdong Province of China(2019A1515110447)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(2019B1515120008)the Key-Area Research and Development Program of Guangdong Province(2021B0101260001)and the Characteristic Innovation Research Project of College Teachers of Foshan(2019XCC03)Open access funding provided by Shanghai Jiao Tong University
文摘Aqueous zinc ion batteries have high potential applicability for energy storage due to their reliable safety,environmental friendliness,and low cost.However,the freezing of aqueous electrolytes limits the normal operation of batteries at low temperatures.Herein,a series of high-performance and low-cost chloride hydrogel electrolytes with high concentrations and low freezing points are developed.The electrochemical windows of the chloride hydrogel electrolytes are enlarged by>1 V under cryogenic conditions due to the obvious evolution of hydrogen bonds,which highly facilitates the operation of electrolytes at ultralow temperatures,as evidenced by the low-temperature Raman spectroscopy and linear scanning voltammetry.Based on the Hofmeister effect,the hydrogen-bond network of the cooperative chloride hydrogel electrolyte comprising 3 M ZnCl_(2)and 6 M LiCl can be strongly interrupted,thus exhibiting a sufficient ionic conductivity of 1.14 mS cm;and a low activation energy of 0.21 e V at-50℃.This superior electrolyte endows a polyaniline/Zn battery with a remarkable discharge specific capacity of 96.5 mAh g;at-50℃,while the capacity retention remains~100%after 2000 cycles.These results will broaden the basic understanding of chloride hydrogel electrolytes and provide new insights into the development of ultralow-temperature aqueous batteries.
基金The National Natural Science Foundation of China( No. 20274017) and the Nature Science Foundation of Jiangsu Province( No. BK2004415)
文摘The adsorption behaviors of 1-naphthol, 1-naphthylamine and l-naphthol/l-naphthylamine mixtures in water over two macroreticular adsorbents were investigated in single or binary batch systems at 293 K, 303 K and 313 K respectively. All the adsorption isotherms in the studied systems can be adequately fitted by Langmuir model. In the case of aminated macroreticular adsorbent NDA103, 1-naphthol is adsorbed to a larger extent than 1-naphthylamine; while, the opposite trend is found for nonpolar macroreticular adsorbent NDA100. It is noteworthy that at higher temperature(303 K and 313 K), the total uptake amounts of 1-naphthol and 1-naphthylamine in all binary-component systems are obvious larger than the pure uptake amounts in single-component systems, which is presumably due to the cooperative effect primarily arisen from the hydrogen-bonding interaction between the loaded 1-naphthol and 1-naphthylamine molecules. The simultaneous adsorption systems were confirmed to be helpful to the selective adsorption towards 1-naphthol according to the larger selective index.
基金supported by the National Key R&D Program of China(2017YFB0702800)National Natural Science Foundation of China(21802168,21503280,21603277)China Petrochemical Corporation(Sinopec Group)~~
文摘In this contribution,we report the cooperative structure-directing effect of choline hydroxide and aluminosilicate*BEA zeolite in the synthesis of aluminogermanosilicate IWR zeolites for the first time.*BEA zeolites,at variance with any other aluminosilicate zeolites,can serve as heterogeneous seeds for the growth of IWR zeolites and play a cooperative structure-directing role.The crystallization process was investigated using multiple techniques to characterize a series of solid products obtained with various crystallization times.The experiments clearly showed the dissolution of the*BEA zeolite and of an intermediate CDO-type structure.A plausible mechanism for the novel cooperative synthesis has been proposed.The crystallization of the IWR zeolite involves several steps,among which the crucial one is believed to be the reassembly of the building units produced from the decomposition of*BEA zeolite seeds,induced by choline molecules.Having similar structure and common building units(four-,five-,and six-membered rings)with the IWR zeolite,the*BEA zeolite is capable of promoting the reassembly of the building units and can thus play a cooperative structure-directing role.By highlighting the cooperative structure-directing effect of organic molecules and heterogeneous seeds,this study opens up new perspectives for the synthesis of target zeolites that are difficult to prepare by traditional methods.This new synthetic route is also expected to shed light on the discovery of novel zeolites.
文摘Molecular dynamics method was employed to study the binding energies of the selected crystal planes of the 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane(HMX)/1,3-dimethyl-2-imidazolidinone(DMI) cocrystal in different molecular molar ratios. The mechanical properties were estimated in different molar ratios. Solvent effects were evaluated and the cooperativity effects were discussed in the HMX···HF···DMI ternary by using the M06-2x/6-311+G(2df,2p) and MP2(full)/6-311+G(2df,2p) methods. The results indicate that the substituted patterns(020) and(100) own the highest binding energies. The stabilities of cocrystals in the 1:1 and 2:1 ratios are the greatest, and thus the HMX/DMI cocrystals prefer cocrystallizing in the 1:1 and 2:1 molar ratios, which have good mechanical properties. The sensitivity change of cocrystal originates from not only the formation of intermolecular interaction but also the increment of bond dissociation energy of the N–NO2 bond. The cooperativity effect appears in the linear complex while the anti-cooperativity effect is found in the cyclic system. DMI binding to HMX is not energetically and structurally favored in the presence of HF. This is perhaps the reason that the solvent with large dielectric constant weakens the stability of the HMX/DMI cocrystals. Therefore, the solvents with low dielectric constants should be chosen in the preparation of HMX/DMI cocrystals.
文摘The influences of various kinds of UV-absorbers, antioxidants and their mixtures on UV-aging resis- tance of transparent unsaturated polyester FRP are studied by artificial aocelerating aging test.The results show that the UV-aging resistance of com- bined stabilizers is better than single stabilizer. It is concluded that the cooperative effect of UV -absorbers is caused bg the increase of wave leng- th and intensity of the absorption light the coopora- tive effect of UV-absorbers and antioxidants is caused by Dreventing the photo-oxidantion.
基金supported by Key Research Program of Frontier Sciences(No.QYZDB-SSW-SLH022)National Natural Science Foundation of China(No.21676270,No.21878293,No.22178338)+1 种基金the Joint Fund of the Yulin University and the Dalian National-Laboratory for Clean Energy(Grant YLU-DNL Fund2021018)Foundation of State Key Laboratory of Highefficiency Utilization of Coal and Green Chemical Engineering(Grant No.2017-K08)。
文摘The bare amorphous Al_(2)O_(3)-AlPO_(4)and Cs/Al_(2)O_(3)-AlPO_(4)catalysts were developed for the aldol condensation of methyl acetate with formaldehyde to methyl acrylate.The structure and property of catalyst were characterized by XRD,XPS,BET,Pyridine-IR,FT-IR,^(27)Al-MASNMR,NH_(3)-/CO_(2)-TPD and SEM.The correlation between structural features and acid-base properties was established,and the loading effect of the cesium species was investigated.Due to cooperative catalytic effects between the penta-coordinated Al and Al_(2)O_(3),the weak-Ⅱacid and medium acid site densities and the product selectivity were improved.While the basic site densities of these catalysts were almost in proportion to the conversion of methyl acetate.The loaded Cs could form new basic sites and change the distribution of acid sites which further enhance the catalytic performance.As a result,the 10Cs/8AlP was proved to be an optimal catalyst with the yield and selectivity of 21.2%and 85%for methyl acrylate respectively.During the reaction,a deactivation behavior was observed on 10Cs/8AlP catalyst due to the carbon deposition,however,it could be regenerated by thermal treatment in the air atmosphere at 400℃.
文摘In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper.
基金supported by the Key-Area Research and Development Program of Guangdong Province(2020B0101350001)the Shenzhen Fundamental Research Program(GXWD2020123116580700720200812124825001)+1 种基金the Shenzhen Science and Technology Program(RCBS20210706092258097)supported by the Shenzhen Bay Laboratory Supercomputing Center。
文摘Fluoroacetate dehalogenases(FAcD),a homodimeric enzyme,catalyzes the conversion of fluoroacetic acid to glycolic acid(GoA).It has been proved that the enzyme has a half-of-the-site reactivity.Namely,its catalytic(C)subunit converts the first substrate to a covalent intermediate;then,the non-catalytic(NC)subunit binds a second substrate and promotes the conversion of the intermediate in the C subunit into the final product.After the release of the product,the C subunit becomes the NC subunit,and the previous NC subunit becomes the C subunit.To elucidate the detailed mechanism behind this cooperative catalysis,we have conducted microsecond-scale MD simulations along the reaction pathway.The simulations indicate that the substrate in the NC subunit induces W185 and Y141 adopting an open conformation in the C subunit.The opening of W185(C)facilitates the entry of catalytic water,enhancing the catalytic activity for product formation,while the opening of Y141(C)creates an unfavorable environment for product binding,promoting its release.An interaction network analysis reveals that the substrate in the NC subunit can induce conformational changes through a conserved water chain at the interface.
基金Program for Changjiang Scholars and Innovative Research Team(PCSIRT)in UniversityNational Natural Science Foundation of China,Grant/Award Number:21574015。
文摘Photoluminescence(PL)mechanisms of nontraditional luminogens(NTLs)have attracted great interest,and they are generally explained with intra/intermolecular through-space conjugation(TSC)of nonconventional chromophores.Here a new concept of nonaromatic through-bond conjugation(TBC)is proposed and it is proved that it plays an important role in the PL of NTLs.The PL behaviors of the three respective isomers of cyclohexanedione and gemdimethyl-1,3-cyclohexanedione were studied and correlated with their chemical and aggregate structures.These compounds show differentfluorescence emissions as well as dif-ferent concentration,excitation and solvent-dependent emissions.The compounds which undergo keto-enol tautomerism and hence with a conjugated ketone-enol structure(i.e.,nonaromatic TBC)show more red-shifted emissions.TBC effect reduces the energy gaps and facilitates the formation of stronger TSC in the aggre-gate state.The compounds in the ketone-enol form are also prone to occur excited state intra/intermolecular proton transfer(ESIPT).The cooperative effect of nonaro-matic TBC and TSC determines the PL behaviors of NTLs.This work provides a novel understanding of the PL mechanisms of NTLs and is of great importance for directing the design and synthesis of novel NTLs.
文摘Human factors engineering and quality management are different research branches in the field of industrial engineering.A basis for interaction based on the concepts and techniques of human factors engineering and quality management with some practical examples of cooperative effect is defined in this paper.The specific challenges about the quality management in manufacturing and service are presented to demonstrate that the human factors analysis of quality problems leads to new tends for integrated development.
基金supported by the National Natural Science Foundation of China (21676306,21425627)the National Key Research and Development Program of China (2016YFA0602900)the Natural Science Foundation of Guangdong Province (2016A030310211,2015A030313104)~~
文摘The chemical transformation of CO2under mild conditions remains a great challenge because of itsexceptional kinetic and thermodynamic stability.Two important reactions in the transformation ofCO2are the N‐formylation reaction of amines using hydrosilanes and CO2,and the cycloaddition ofCO2to epoxides.Here,we report the high efficiency of bifunctional metallosalen complexes bearingquaternary phosphonium salts in catalyzing both of these reactions under solvent‐free,mild conditionswithout the need for co‐catalysts.The catalysts’bifunctionality is attributed to an intramolecularcooperative process between the metal center and the halogen anion.Depending on the reaction,this activates CO2by permitting either the synergistic activation of Si–H bond via metal–hydrogen coordinative bond(M–H)or the dual activation of epoxide via metal–oxygen coordinativebond(M–O).The one‐component catalysts are also shown to be easily recovered and reusedfive times without significant loss of activity or selectivity.The current results are combined withprevious work in the area to propose the relevant reaction mechanisms.
基金supported by the National Natural Science Foundation of China (21676306,21425627)the National Key Research and Development Program of China (2016YFA0602900)+1 种基金the Natural Science Foundation of Guangdong Province (2016A030310211)the Characteristic Innovation Project (Natural Science) of Guangdong Colleges and Universities~~
文摘The combination of a zinc phthalocyanine(ZnPc)catalyst and a stoichiometric amount of dimethyl formamide(DMF)provided a simple route to formamide derivatives from amines,CO2,and hydrosilanes under mild conditions.We deduced that formation of an active zinc‐hydrogen(Zn‐H)species promoted hydride transfer from the hydrosilane to CO2.The cooperative activation of the Lewis acidic ZnPc by strongly polar DMF,led to formation of activated amines and hydrosilanes,which promoted the chemical reduction of CO2.Consequently,the binary ZnPc/DMF catalytic system showed excellent yields and superior chemoselectivity,representing a simple and sustainable pathway for the reductive transformation of CO2into valuable chemicals as an alternative to conventional halogen‐containing process.
基金supported by the National Natural Science Foundation of China(201573136,21603128,U1510105)the Natural Science Foundation for Young Scientists of Shanxi Province(2016021034)the Scientific Research Start-up Funds of Shanxi University(RSC723)~~
文摘A rational integration of multiple reactive centers into a combined unit to facilitate their cooperative effects is a smart approach for accelerating the catalytic activity.Here,to achieve this goal,linear imidazolium-based ionic polymers were confined into the nanopores of mesoporous silica nanospheres anchored with homogeneously distributed zinc salts.Owing to the flexible character and the reinforced cooperative effects of the ionic liquid(nucleophile)and zinc species(Lewis acid)in the confined mesoporous structure,the resultant composite exhibited dramatically improved catalytic performance in the cycloaddition of CO2 with epoxides to form cyclic carbonates.This was in contrast to that observed for the individual catalytic components.Moreover,such a solid catalyst could be easily recovered and reused four times without a significant loss of activity.
基金supported by the State Key Laboratory of Heavy Oil Processing (No. 200803)the Ministry of Science and Technology of China (No.2005CB221406)
文摘In the present study, we have investigated the reducibility of CuO species on CuO-CeO2 catalysts and the influence of CuO species on the catalytic performance for CO preferential oxidation (CO PROX) in excess hydrogen. It is revealed that the smaller the difference of reduction temperature (denoted as ?T) for two adjacent CuO species is, the higher the catalytic activity of CuO-CeO2 for the PROX in excess hydrogen may be obtained. It means that if the reduction energy of Cu0-Cu2+ pairs matched better, the reduction-oxidation recycle of Cu0-Cu2+ pairs would go on more easily, then the transferring energy of Cu0-Cu2+ pairs would be lesser. Therefore, the CuO-CeO2 catalysts will be largely improved in their catalytic performance if the different CuO species on the catalysts have matched the reduction energy, which would allows them to cooperate effectively.
基金supported financially by the National Natural Science Foundation of China(21706043)。
文摘Limited by the shuttle effect, the application of lithium-sulfur batteries is not impressive. As an organ layered two-dimensional(2D) material, MXene has a great electrical conductivity and high specific surface area. Meanwhile, the introduction of metal oxides can restrain the shuttle effect. Hence, this paper prepared CeO_(2)/MXene as a cathode material of Li-S batteries. Ce and Ti can chemically adsorb S, and the interlayer structure of MXene can limit S while the interlayer space can alleviate volume expansion.The discharge capacity at 0.5 C is as high as 1051.1 m Ah g^(-1), and 921.9 m Ah g^(-1) after 200 cycles. The average coulombic efficiency is 97.75%. The organized MXene with CeO_(2) like notes in accordions are new efficient materials for lithium-sulfur batteries.
基金This study was funded by the National Natural Science Foundation of China(No.20274017)the Natural Science Foundation of Jiangsu Province(No.BK2004415).
文摘The binary adsorption behavior of 1-naphthol/1-naphthylamine mixtures in water on nonpolar adsorbent Amberlite XAD4 was investigated at 293 K, 303 K and 313 K, respectively. The experimental uptakes of 1-naphthol and 1-naphthylamine in all binary-component systems of different molar ratios were obviously higher than the corresponding uptakes predicted by the extended Langmuir model, assuming no interaction between the adsorbed molecules of the two components. This phenomenon was attributed to the cooperative adsorption effect arising from the hydrogen bonding interaction between 1-naphthol and 1-naphthylamine molecules. A modified extended Langmuir model was proposed to describe the binary adsorption behavior by means of introducing a fitting parameter related with the cooperative adsorption effect of the adsorbates.
文摘Thermodynamic data were determined for the reversible binding of O 2 to two compounds of dicobalt(II) di(meso tetra phenyl)porphyrin derivatives with different lengths of diamidoaliphatic bridge (abbreviated to Co 2PP 8 and Co 2PP 4) in N,N dimethylformamide at room temperature. The partial pressure of dioxygen necessary for half oxygenation ( P 1/2 ) and Hill coefficient ( n ) at 298 K were determined as follows: P 1/2 =54.2 kPa, n =2.0 for Co 2PP 8 and P 1/2 =6.8 kPa, n =1.8 for Co 2PP 4,respectively. The rate equations of reversible oxygen binding by Co 2PP 8 were determined and the reaction path was proposed. The results of thermodynamic and kinetic studies indicate that there exists strong cooperative effect during oxygenation of the compounds. The ESR observation reveals that the dioxygen complexes formed in the solutions are of superoxo (Co O - 2) type.
基金supported by the 2020-JCJQ Project (No. GFJQ2126–007)National Natural Science Foundation of China (No. 11974136)。
文摘The cooperative effect plays a significant role in understanding the intermolecular donor-acceptor interactions of hydrogen bonds(H-bonds, D-H···A). Here, using the coupled-cluster singles and doubles with perturbative triple excitations(CCSD(T)) method of high-precision ab initio calculations, we show that the intermolecular H-bonded systems with different D and A atoms reproduce the structural changes predicted by the well-known cooperative effect upon intermolecular compression. That is, with decreasing intermolecular distance, the D-H bond length first increases and then decreases, while the H···A distance decreases. On the contrary, when D and A are the same, as the intermolecular distance decreases, the D-H bond length decreases without increasing. This obvious difference means that the cooperative effect may not be generally characterized by intermolecular compression. Interestingly, further analyses of many intermolecular systems confirm that this failure has boundaries, i.e., cooperative systems at their respective equilibrium positions have a smaller core-valence bifurcation(CVB) index(<0.022) and stronger binding energies(>0.25 eV), showing a clear linear inverse relationship related to H-bond strength. These findings provide an important reference for the comprehensive understanding of H-bonds and its calculation methods.