An optimal linear precoding scheme based on Particle Swarm Optimization(PSO),which aims to maximize the system capacity of the cooperative transmission in the downlink channel,is proposed for a multicell multiuser sin...An optimal linear precoding scheme based on Particle Swarm Optimization(PSO),which aims to maximize the system capacity of the cooperative transmission in the downlink channel,is proposed for a multicell multiuser single input single output system.With such a scheme,the optimal precoding vector could be easily searched for each user according to a simplified objective function.Simulation results show that the proposed scheme can obtain larger average spectrum efficiency and a better Bit Error Rate(BER) performance than Zero Forcing(ZF) and Minimum Mean Square Error(MMSE) algorithm.展开更多
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt...Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.展开更多
This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users...This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users(MSU). A group of atom services, each of which has its level of quality of service(QoS), can be combined together into a certain structure to form a composite service. Since there are a large number of atom services having the same function, the atom service is selected to participate in the composite service so as to fulfill users' will. In this paper a method based on discrete particle swarm optimization(DPSO) is proposed to tackle this problem. The method aims at selecting atom services from service repositories to constitute the composite service, satisfying the MSU's requirement on QoS. Since the QoS criteria include location-aware criteria and location-independent criteria, this method aims to get the composite service with the highest location-aware criteria and the best-match location-independent criteria. Simulations show that the DPSO has a better performance compared with the standard particle swarm optimization(PSO) and genetic algorithm(GA).展开更多
Accompanied by the advent of current big data ages,the scales of real world optimization problems with many decisive design variables are becoming much larger.Up to date,how to develop new optimization algorithms for ...Accompanied by the advent of current big data ages,the scales of real world optimization problems with many decisive design variables are becoming much larger.Up to date,how to develop new optimization algorithms for these large scale problems and how to expand the scalability of existing optimization algorithms have posed further challenges in the domain of bio-inspired computation.So addressing these complex large scale problems to produce truly useful results is one of the presently hottest topics.As a branch of the swarm intelligence based algorithms,particle swarm optimization (PSO) for coping with large scale problems and its expansively diverse applications have been in rapid development over the last decade years.This reviewpaper mainly presents its recent achievements and trends,and also highlights the existing unsolved challenging problems and key issues with a huge impact in order to encourage further more research in both large scale PSO theories and their applications in the forthcoming years.展开更多
Test case prioritization(TCP) technique is an efficient approach to improve regression testing activities. With the continuous improvement of industrial testing requirements, traditional single-objective TCP is limite...Test case prioritization(TCP) technique is an efficient approach to improve regression testing activities. With the continuous improvement of industrial testing requirements, traditional single-objective TCP is limited greatly, and multi-objective test case prioritization(MOTCP) technique becomes one of the hot topics in the field of software testing in recent years. Considering the problems of traditional genetic algorithm(GA) and swarm intelligence algorithm in solving MOTCP problems, such as falling into local optimum quickly and weak stability of the algorithm, a MOTCP algorithm based on multi-population cooperative particle swarm optimization(MPPSO) was proposed in this paper. Empirical studies were conducted to study the influence of iteration times on the proposed MOTCP algorithm, and compare the performances of MOTCP based on single-population particle swarm optimization(PSO) and MOTCP based on non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) with the MOTCP algorithm proposed in this paper. The results of experiments show that the TCP algorithm based on MPPSO has stronger global optimization ability, is not easy to fall into local optimum, and can solve the MOTCP problem better than TCP algorithm based on the single-population PSO and NSGA-Ⅱ.展开更多
The introduction ofproportional-integral-dorivative (PID) controllers into cooperative collision avoidance systems (CCASs) has been hindered by difficulties in their optimization and by a lack of study of their ef...The introduction ofproportional-integral-dorivative (PID) controllers into cooperative collision avoidance systems (CCASs) has been hindered by difficulties in their optimization and by a lack of study of their effects on vehicle driving stability, comfort, and fuel economy. In this paper, we propose a method to optimize PID controllers using an improved particle swarm optimization (PSO) algorithm, and to bettor manipulate cooperative collision avoidance with other vehicles. First, we use PRESCAN and MATLAB/Simulink to conduct a united simulation, which constructs a CCAS composed of a PID controller, maneuver strategy judging modules, and a path planning module. Then we apply the improved PSO algorithm to optimize the PID controller based on the dynamic vehicle data obtained. Finally, we perform a simulation test of performance before and after the optimization of the PID controller, in which vehicles equipped with a CCAS undertake deceleration driving and steering under the two states of low speed (≤50 km/h) and high speed (≥100 km/h) cruising. The results show that the PID controller optimized using the proposed method can achieve not only the basic functions of a CCAS, but also improvements in vehicle dynamic stability, riding comfort, and fuel economy.展开更多
Cryogenic ground support equipment (CGSE) is an important part of a famous particle physics experiment - AMS-02. In this paper a design method which optimizes PID parameters of CGSE control system via the particle swa...Cryogenic ground support equipment (CGSE) is an important part of a famous particle physics experiment - AMS-02. In this paper a design method which optimizes PID parameters of CGSE control system via the particle swarm optimization (PSO) algorithm is presented. Firstly, an improved version of the original PSO, cooperative random learning particle swarm optimization (CRPSO), is put forward to enhance the performance of the conventional PSO. Secondly, the way of finding PID coefficient will be studied by using this algorithm. Finally, the experimental results and practical works demonstrate that the CRPSO-PID controller achieves a good performance.展开更多
Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been ...Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been proven that computing minimal reduc- tion of decision tables is a non-derterministic polynomial (NP)-hard problem. A new cooperative extended attribute reduction algorithm named Co-PSAR based on improved PSO is proposed, in which the cooperative evolutionary strategy with suitable fitness func- tions is involved to learn a good hypothesis for accelerating the optimization of searching minimal attribute reduction. Experiments on Benchmark functions and University of California, Irvine (UCI) data sets, compared with other algorithms, verify the superiority of the Co-PSAR algorithm in terms of the convergence speed, efficiency and accuracy for the attribute reduction.展开更多
Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation dur...Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation during beyond-visual-range(BVR)air combat.However,prior research on occupational decision-making in BVR air combat has mostly been limited to one-on-one scenarios.As such,this study presents a practical cooperative occupation decision-making methodology for use with multiple UCAVs.The weapon engagement zone(WEZ)and combat geometry were first used to develop an advantage function for situational assessment of one-on-one engagement.An encircling advantage function was then designed to represent the cooperation of UCAVs,thereby establishing a cooperative occupation model.The corresponding objective function was derived from the one-on-one engagement advantage function and the encircling advantage function.The resulting model exhibited similarities to a mixed-integer nonlinear programming(MINLP)problem.As such,an improved discrete particle swarm optimization(DPSO)algorithm was used to identify a solution.The occupation process was then converted into a formation switching task as part of the cooperative occupation model.A series of simulations were conducted to verify occupational solutions in varying situations,including two-on-two engagement.Simulated results showed these solutions varied with initial conditions and weighting coefficients.This occupation process,based on formation switching,effectively demonstrates the viability of the proposed technique.These cooperative occupation results could provide a theoretical framework for subsequent research in cooperative BVR air combat.展开更多
Among the bio-inspired techniques,PSO-based clustering algorithms have received special attention. An improved method named Particle Swarm Optimization (PSO) clustering algorithm based on cooperative evolution with mu...Among the bio-inspired techniques,PSO-based clustering algorithms have received special attention. An improved method named Particle Swarm Optimization (PSO) clustering algorithm based on cooperative evolution with multi-populations was presented. It adopts cooperative evolutionary strategy with multi-populations to change the mode of traditional searching optimum solutions. It searches the local optimum and updates the whole best position (gBest) and local best position (pBest) ceaselessly. The gBest will be passed in all sub-populations. When the gBest meets the precision,the evolution will terminate. The whole clustering process is divided into two stages. The first stage uses the cooperative evolutionary PSO algorithm to search the initial clustering centers. The second stage uses the K-means algorithm. The experiment results demonstrate that this method can extract the correct number of clusters with good clustering quality compared with the results obtained from other clustering algorithms.展开更多
The recent aggrandizement of radio frequency(RF)signals in wireless power transmission combined with energy harvesting methods have led to the replacement of traditional battery-powered wireless networks since the blo...The recent aggrandizement of radio frequency(RF)signals in wireless power transmission combined with energy harvesting methods have led to the replacement of traditional battery-powered wireless networks since the blooming RF technology provides energy renewal of wireless devices with the quality of service(QoS).In addition,it does not require any unnecessary alterations on the transmission hardware side.A hybridized global optimization technique uniting Global best and Local best(GL)based particle swarm optimization(PSO)and ant colony optimization(ACO)is proposed in this paper to optimally allocate resources in wireless powered communication networks(WPCN)through coordinated operation of communication groups,in which the wireless energy transfer and information sharing take place concomitantly by the aid of a cooperative relay positioned in between the communicating groups.The designed algorithm assists in minimizing power consumption and maximizes the weighted sum rate at the end-user side.Thus the principal target of the system is coordinated optimization of energy beamforming along with time and energy allocation to reduce the total energy consumed combined with assured information rates of the communication groups.Numerical outputs are presented to manifest the proposed system’s performance to verify the analytical results via simulations.展开更多
基金Supported by the National Natural Science Foundation of China(No. 60972041,No. 60572130)Open Research Foundation of National Mobile Communications Research Laboratory,Southeast University,Natural Science Fundamental Research Program of Jiangsu Universities(No. 08KJD510001)+2 种基金Ph.D.Program Foundation of Ministry of Education(No.200802930004)National Special Project (No.2009ZX03003-006)the Science Foundation of Henan University of Technology(No.09XGG010)
文摘An optimal linear precoding scheme based on Particle Swarm Optimization(PSO),which aims to maximize the system capacity of the cooperative transmission in the downlink channel,is proposed for a multicell multiuser single input single output system.With such a scheme,the optimal precoding vector could be easily searched for each user according to a simplified objective function.Simulation results show that the proposed scheme can obtain larger average spectrum efficiency and a better Bit Error Rate(BER) performance than Zero Forcing(ZF) and Minimum Mean Square Error(MMSE) algorithm.
文摘Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.
基金supported by the National Natural Science Foundation of China(61573283)
文摘This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users(MSU). A group of atom services, each of which has its level of quality of service(QoS), can be combined together into a certain structure to form a composite service. Since there are a large number of atom services having the same function, the atom service is selected to participate in the composite service so as to fulfill users' will. In this paper a method based on discrete particle swarm optimization(DPSO) is proposed to tackle this problem. The method aims at selecting atom services from service repositories to constitute the composite service, satisfying the MSU's requirement on QoS. Since the QoS criteria include location-aware criteria and location-independent criteria, this method aims to get the composite service with the highest location-aware criteria and the best-match location-independent criteria. Simulations show that the DPSO has a better performance compared with the standard particle swarm optimization(PSO) and genetic algorithm(GA).
文摘Accompanied by the advent of current big data ages,the scales of real world optimization problems with many decisive design variables are becoming much larger.Up to date,how to develop new optimization algorithms for these large scale problems and how to expand the scalability of existing optimization algorithms have posed further challenges in the domain of bio-inspired computation.So addressing these complex large scale problems to produce truly useful results is one of the presently hottest topics.As a branch of the swarm intelligence based algorithms,particle swarm optimization (PSO) for coping with large scale problems and its expansively diverse applications have been in rapid development over the last decade years.This reviewpaper mainly presents its recent achievements and trends,and also highlights the existing unsolved challenging problems and key issues with a huge impact in order to encourage further more research in both large scale PSO theories and their applications in the forthcoming years.
基金supported by the National Natural Science Foundation of China (61702044)the Fundamental Research Funds for the Central Universities (2019XD-A20).
文摘Test case prioritization(TCP) technique is an efficient approach to improve regression testing activities. With the continuous improvement of industrial testing requirements, traditional single-objective TCP is limited greatly, and multi-objective test case prioritization(MOTCP) technique becomes one of the hot topics in the field of software testing in recent years. Considering the problems of traditional genetic algorithm(GA) and swarm intelligence algorithm in solving MOTCP problems, such as falling into local optimum quickly and weak stability of the algorithm, a MOTCP algorithm based on multi-population cooperative particle swarm optimization(MPPSO) was proposed in this paper. Empirical studies were conducted to study the influence of iteration times on the proposed MOTCP algorithm, and compare the performances of MOTCP based on single-population particle swarm optimization(PSO) and MOTCP based on non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) with the MOTCP algorithm proposed in this paper. The results of experiments show that the TCP algorithm based on MPPSO has stronger global optimization ability, is not easy to fall into local optimum, and can solve the MOTCP problem better than TCP algorithm based on the single-population PSO and NSGA-Ⅱ.
基金Project supported by the National Natural Science Foundation o4 China (No. 61300145)
文摘The introduction ofproportional-integral-dorivative (PID) controllers into cooperative collision avoidance systems (CCASs) has been hindered by difficulties in their optimization and by a lack of study of their effects on vehicle driving stability, comfort, and fuel economy. In this paper, we propose a method to optimize PID controllers using an improved particle swarm optimization (PSO) algorithm, and to bettor manipulate cooperative collision avoidance with other vehicles. First, we use PRESCAN and MATLAB/Simulink to conduct a united simulation, which constructs a CCAS composed of a PID controller, maneuver strategy judging modules, and a path planning module. Then we apply the improved PSO algorithm to optimize the PID controller based on the dynamic vehicle data obtained. Finally, we perform a simulation test of performance before and after the optimization of the PID controller, in which vehicles equipped with a CCAS undertake deceleration driving and steering under the two states of low speed (≤50 km/h) and high speed (≥100 km/h) cruising. The results show that the PID controller optimized using the proposed method can achieve not only the basic functions of a CCAS, but also improvements in vehicle dynamic stability, riding comfort, and fuel economy.
基金the National Basic Research Program (973) of China (No. 2004CB720703)
文摘Cryogenic ground support equipment (CGSE) is an important part of a famous particle physics experiment - AMS-02. In this paper a design method which optimizes PID parameters of CGSE control system via the particle swarm optimization (PSO) algorithm is presented. Firstly, an improved version of the original PSO, cooperative random learning particle swarm optimization (CRPSO), is put forward to enhance the performance of the conventional PSO. Secondly, the way of finding PID coefficient will be studied by using this algorithm. Finally, the experimental results and practical works demonstrate that the CRPSO-PID controller achieves a good performance.
基金supported by the National Natural Science Foundation of China (60873069 61171132)+3 种基金the Jiangsu Government Scholarship for Overseas Studies (JS-2010-K005)the Funding of Jiangsu Innovation Program for Graduate Education (CXZZ11 0219)the Open Project Program of Jiangsu Provincial Key Laboratory of Computer Information Processing Technology (KJS1023)the Applying Study Foundation of Nantong (BK2011062)
文摘Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been proven that computing minimal reduc- tion of decision tables is a non-derterministic polynomial (NP)-hard problem. A new cooperative extended attribute reduction algorithm named Co-PSAR based on improved PSO is proposed, in which the cooperative evolutionary strategy with suitable fitness func- tions is involved to learn a good hypothesis for accelerating the optimization of searching minimal attribute reduction. Experiments on Benchmark functions and University of California, Irvine (UCI) data sets, compared with other algorithms, verify the superiority of the Co-PSAR algorithm in terms of the convergence speed, efficiency and accuracy for the attribute reduction.
基金supported by the National Natural Science Foundation of China(No.61573286)the Aeronautical Science Foundation of China(No.20180753006)+2 种基金the Fundamental Research Funds for the Central Universities(3102019ZDHKY07)the Natural Science Foundation of Shaanxi Province(2020JQ-218)the Shaanxi Province Key Laboratory of Flight Control and Simulation Technology。
文摘Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation during beyond-visual-range(BVR)air combat.However,prior research on occupational decision-making in BVR air combat has mostly been limited to one-on-one scenarios.As such,this study presents a practical cooperative occupation decision-making methodology for use with multiple UCAVs.The weapon engagement zone(WEZ)and combat geometry were first used to develop an advantage function for situational assessment of one-on-one engagement.An encircling advantage function was then designed to represent the cooperation of UCAVs,thereby establishing a cooperative occupation model.The corresponding objective function was derived from the one-on-one engagement advantage function and the encircling advantage function.The resulting model exhibited similarities to a mixed-integer nonlinear programming(MINLP)problem.As such,an improved discrete particle swarm optimization(DPSO)algorithm was used to identify a solution.The occupation process was then converted into a formation switching task as part of the cooperative occupation model.A series of simulations were conducted to verify occupational solutions in varying situations,including two-on-two engagement.Simulated results showed these solutions varied with initial conditions and weighting coefficients.This occupation process,based on formation switching,effectively demonstrates the viability of the proposed technique.These cooperative occupation results could provide a theoretical framework for subsequent research in cooperative BVR air combat.
基金National Natural Science Foundation of China ( No.60873058)Science and Technology Project of Shandong Province of China (No.2009GG10001008)Soft Science Research Project, China (No.2009RKA285)
文摘Among the bio-inspired techniques,PSO-based clustering algorithms have received special attention. An improved method named Particle Swarm Optimization (PSO) clustering algorithm based on cooperative evolution with multi-populations was presented. It adopts cooperative evolutionary strategy with multi-populations to change the mode of traditional searching optimum solutions. It searches the local optimum and updates the whole best position (gBest) and local best position (pBest) ceaselessly. The gBest will be passed in all sub-populations. When the gBest meets the precision,the evolution will terminate. The whole clustering process is divided into two stages. The first stage uses the cooperative evolutionary PSO algorithm to search the initial clustering centers. The second stage uses the K-means algorithm. The experiment results demonstrate that this method can extract the correct number of clusters with good clustering quality compared with the results obtained from other clustering algorithms.
文摘The recent aggrandizement of radio frequency(RF)signals in wireless power transmission combined with energy harvesting methods have led to the replacement of traditional battery-powered wireless networks since the blooming RF technology provides energy renewal of wireless devices with the quality of service(QoS).In addition,it does not require any unnecessary alterations on the transmission hardware side.A hybridized global optimization technique uniting Global best and Local best(GL)based particle swarm optimization(PSO)and ant colony optimization(ACO)is proposed in this paper to optimally allocate resources in wireless powered communication networks(WPCN)through coordinated operation of communication groups,in which the wireless energy transfer and information sharing take place concomitantly by the aid of a cooperative relay positioned in between the communicating groups.The designed algorithm assists in minimizing power consumption and maximizes the weighted sum rate at the end-user side.Thus the principal target of the system is coordinated optimization of energy beamforming along with time and energy allocation to reduce the total energy consumed combined with assured information rates of the communication groups.Numerical outputs are presented to manifest the proposed system’s performance to verify the analytical results via simulations.