期刊文献+
共找到304篇文章
< 1 2 16 >
每页显示 20 50 100
A LINEAR PRECODING STRATEGY BASED ON PARTICLE SWARM OPTIMIZATION IN MULTICELL COOPERATIVE TRANSMISSION 被引量:1
1
作者 Zhang Rui Song Rongfang 《Journal of Electronics(China)》 2011年第1期15-21,共7页
An optimal linear precoding scheme based on Particle Swarm Optimization(PSO),which aims to maximize the system capacity of the cooperative transmission in the downlink channel,is proposed for a multicell multiuser sin... An optimal linear precoding scheme based on Particle Swarm Optimization(PSO),which aims to maximize the system capacity of the cooperative transmission in the downlink channel,is proposed for a multicell multiuser single input single output system.With such a scheme,the optimal precoding vector could be easily searched for each user according to a simplified objective function.Simulation results show that the proposed scheme can obtain larger average spectrum efficiency and a better Bit Error Rate(BER) performance than Zero Forcing(ZF) and Minimum Mean Square Error(MMSE) algorithm. 展开更多
关键词 particle swarm optimization(PSO) Linear precoding cooperative transmission
下载PDF
HEURISTIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR AIR COMBAT DECISION-MAKING ON CMTA 被引量:18
2
作者 罗德林 杨忠 +2 位作者 段海滨 吴在桂 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第1期20-26,共7页
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt... Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem. 展开更多
关键词 air combat decision-making cooperative multiple target attack particle swarm optimization heuristic algorithm
下载PDF
Service composition based on discrete particle swarm optimization in military organization cloud cooperation 被引量:2
3
作者 An Zhang Haiyang Sun +1 位作者 Zhili Tang Yuan Yuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期590-601,共12页
This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users... This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users(MSU). A group of atom services, each of which has its level of quality of service(QoS), can be combined together into a certain structure to form a composite service. Since there are a large number of atom services having the same function, the atom service is selected to participate in the composite service so as to fulfill users' will. In this paper a method based on discrete particle swarm optimization(DPSO) is proposed to tackle this problem. The method aims at selecting atom services from service repositories to constitute the composite service, satisfying the MSU's requirement on QoS. Since the QoS criteria include location-aware criteria and location-independent criteria, this method aims to get the composite service with the highest location-aware criteria and the best-match location-independent criteria. Simulations show that the DPSO has a better performance compared with the standard particle swarm optimization(PSO) and genetic algorithm(GA). 展开更多
关键词 service composition cloud cooperation discrete particle swarm optimization(DPSO)
下载PDF
Recent Advances in Particle Swarm Optimization for Large Scale Problems
4
作者 Danping Yan Yongzhong Lu +3 位作者 Min Zhou Shiping Chen David Levy Jicheng You 《Journal of Autonomous Intelligence》 2018年第1期22-35,共14页
Accompanied by the advent of current big data ages,the scales of real world optimization problems with many decisive design variables are becoming much larger.Up to date,how to develop new optimization algorithms for ... Accompanied by the advent of current big data ages,the scales of real world optimization problems with many decisive design variables are becoming much larger.Up to date,how to develop new optimization algorithms for these large scale problems and how to expand the scalability of existing optimization algorithms have posed further challenges in the domain of bio-inspired computation.So addressing these complex large scale problems to produce truly useful results is one of the presently hottest topics.As a branch of the swarm intelligence based algorithms,particle swarm optimization (PSO) for coping with large scale problems and its expansively diverse applications have been in rapid development over the last decade years.This reviewpaper mainly presents its recent achievements and trends,and also highlights the existing unsolved challenging problems and key issues with a huge impact in order to encourage further more research in both large scale PSO theories and their applications in the forthcoming years. 展开更多
关键词 swarm INTELLIGENCE particle swarm optimization large scale optimization problem cooperative coevolution ENSEMBLE evolution static GROUPING METHOD dynamic GROUPING METHOD
下载PDF
Multi-objective test case prioritization based on multi-population cooperative particle swarm optimization 被引量:3
5
作者 Wang Hongman Li Jinzhong +1 位作者 Xing Ying Zhou Xiaoguang 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2020年第1期38-50,共13页
Test case prioritization(TCP) technique is an efficient approach to improve regression testing activities. With the continuous improvement of industrial testing requirements, traditional single-objective TCP is limite... Test case prioritization(TCP) technique is an efficient approach to improve regression testing activities. With the continuous improvement of industrial testing requirements, traditional single-objective TCP is limited greatly, and multi-objective test case prioritization(MOTCP) technique becomes one of the hot topics in the field of software testing in recent years. Considering the problems of traditional genetic algorithm(GA) and swarm intelligence algorithm in solving MOTCP problems, such as falling into local optimum quickly and weak stability of the algorithm, a MOTCP algorithm based on multi-population cooperative particle swarm optimization(MPPSO) was proposed in this paper. Empirical studies were conducted to study the influence of iteration times on the proposed MOTCP algorithm, and compare the performances of MOTCP based on single-population particle swarm optimization(PSO) and MOTCP based on non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) with the MOTCP algorithm proposed in this paper. The results of experiments show that the TCP algorithm based on MPPSO has stronger global optimization ability, is not easy to fall into local optimum, and can solve the MOTCP problem better than TCP algorithm based on the single-population PSO and NSGA-Ⅱ. 展开更多
关键词 regression testing test case PRIORITIZATION MULTI-POPULATION cooperative particle swarm optimization MULTI-OBJECTIVE optimization
原文传递
Using improved particle swarm optimization to tune PID controllers in cooperative collision avoidance systems 被引量:6
6
作者 Xing-chen WU Gui-he QIN +2 位作者 Ming-hui SUN He YU Qian-yi XU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第9期1385-1395,共11页
The introduction ofproportional-integral-dorivative (PID) controllers into cooperative collision avoidance systems (CCASs) has been hindered by difficulties in their optimization and by a lack of study of their ef... The introduction ofproportional-integral-dorivative (PID) controllers into cooperative collision avoidance systems (CCASs) has been hindered by difficulties in their optimization and by a lack of study of their effects on vehicle driving stability, comfort, and fuel economy. In this paper, we propose a method to optimize PID controllers using an improved particle swarm optimization (PSO) algorithm, and to bettor manipulate cooperative collision avoidance with other vehicles. First, we use PRESCAN and MATLAB/Simulink to conduct a united simulation, which constructs a CCAS composed of a PID controller, maneuver strategy judging modules, and a path planning module. Then we apply the improved PSO algorithm to optimize the PID controller based on the dynamic vehicle data obtained. Finally, we perform a simulation test of performance before and after the optimization of the PID controller, in which vehicles equipped with a CCAS undertake deceleration driving and steering under the two states of low speed (≤50 km/h) and high speed (≥100 km/h) cruising. The results show that the PID controller optimized using the proposed method can achieve not only the basic functions of a CCAS, but also improvements in vehicle dynamic stability, riding comfort, and fuel economy. 展开更多
关键词 cooperative collision avoidance system (CCAS) Improved particle swarm optimization (PSO) PID controller Vehicle comfort Fuel economy
原文传递
Optimization for PID Controller of Cryogenic Ground Support Equipment Based on Cooperative Random Learning Particle Swarm Optimization 被引量:2
7
作者 李祥宝 季睿 杨煜普 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第2期140-146,共7页
Cryogenic ground support equipment (CGSE) is an important part of a famous particle physics experiment - AMS-02. In this paper a design method which optimizes PID parameters of CGSE control system via the particle swa... Cryogenic ground support equipment (CGSE) is an important part of a famous particle physics experiment - AMS-02. In this paper a design method which optimizes PID parameters of CGSE control system via the particle swarm optimization (PSO) algorithm is presented. Firstly, an improved version of the original PSO, cooperative random learning particle swarm optimization (CRPSO), is put forward to enhance the performance of the conventional PSO. Secondly, the way of finding PID coefficient will be studied by using this algorithm. Finally, the experimental results and practical works demonstrate that the CRPSO-PID controller achieves a good performance. 展开更多
关键词 particle swarm optimization (PSO) PID controller cryogenic ground support equipment (CGSE) cooperative random learning particle swarm optimization (CRPSO)
原文传递
Cooperative extended rough attribute reduction algorithm based on improved PSO 被引量:10
8
作者 Weiping Ding Jiandong Wang Zhijin Guan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期160-166,共7页
Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been ... Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been proven that computing minimal reduc- tion of decision tables is a non-derterministic polynomial (NP)-hard problem. A new cooperative extended attribute reduction algorithm named Co-PSAR based on improved PSO is proposed, in which the cooperative evolutionary strategy with suitable fitness func- tions is involved to learn a good hypothesis for accelerating the optimization of searching minimal attribute reduction. Experiments on Benchmark functions and University of California, Irvine (UCI) data sets, compared with other algorithms, verify the superiority of the Co-PSAR algorithm in terms of the convergence speed, efficiency and accuracy for the attribute reduction. 展开更多
关键词 rough set extended attribute reduction particle swarm optimization (PSO) cooperative evolutionary strategy fitness function.
下载PDF
A Multi-UCAV cooperative occupation method based on weapon engagement zones for beyond-visual-range air combat 被引量:6
9
作者 Wei-hua Li Jing-ping Shi +2 位作者 Yun-yan Wu Yue-ping Wang Yong-xi Lyu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期1006-1022,共17页
Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation dur... Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation during beyond-visual-range(BVR)air combat.However,prior research on occupational decision-making in BVR air combat has mostly been limited to one-on-one scenarios.As such,this study presents a practical cooperative occupation decision-making methodology for use with multiple UCAVs.The weapon engagement zone(WEZ)and combat geometry were first used to develop an advantage function for situational assessment of one-on-one engagement.An encircling advantage function was then designed to represent the cooperation of UCAVs,thereby establishing a cooperative occupation model.The corresponding objective function was derived from the one-on-one engagement advantage function and the encircling advantage function.The resulting model exhibited similarities to a mixed-integer nonlinear programming(MINLP)problem.As such,an improved discrete particle swarm optimization(DPSO)algorithm was used to identify a solution.The occupation process was then converted into a formation switching task as part of the cooperative occupation model.A series of simulations were conducted to verify occupational solutions in varying situations,including two-on-two engagement.Simulated results showed these solutions varied with initial conditions and weighting coefficients.This occupation process,based on formation switching,effectively demonstrates the viability of the proposed technique.These cooperative occupation results could provide a theoretical framework for subsequent research in cooperative BVR air combat. 展开更多
关键词 Unmanned combat aerial vehicle cooperative occupation Beyond-visual-range air combat Weapon engagement zone Discrete particle swarm optimization Formation switching
下载PDF
基于CPSO-Elman神经网络矿井下可见光定位
10
作者 高欣欣 王凤英 +1 位作者 秦岭 胡晓莉 《传感器与微系统》 CSCD 北大核心 2024年第6期122-124,128,共4页
针对传统矿井下定位方法精度偏低问题,提出一种混沌粒子群优化(CPSO)Elman神经网络矿井下可见光定位系统。由于Elman神经网络在初始化时存在参数设置的随机性导致预测精度不高,采用CPSO算法优化Elman神经网络,选取适合的各层的初始权值... 针对传统矿井下定位方法精度偏低问题,提出一种混沌粒子群优化(CPSO)Elman神经网络矿井下可见光定位系统。由于Elman神经网络在初始化时存在参数设置的随机性导致预测精度不高,采用CPSO算法优化Elman神经网络,选取适合的各层的初始权值和阈值,用于提高神经网络拓扑的稳定性。仿真结果表明:在3.6 m×3.6 m×3.6 m的环境里,本文所提的算法的平均定位误差达到3.70 cm,最大定位误差为26.54 cm,在实验阶段的平均定位误差为5.91 cm,最大定位误差为36.95 cm,能够满足煤矿井下定位需求。 展开更多
关键词 可见光 矿井下定位 混沌粒子群优化算法
下载PDF
PSO Clustering Algorithm Based on Cooperative Evolution
11
作者 曲建华 邵增珍 刘希玉 《Journal of Donghua University(English Edition)》 EI CAS 2010年第2期285-288,共4页
Among the bio-inspired techniques,PSO-based clustering algorithms have received special attention. An improved method named Particle Swarm Optimization (PSO) clustering algorithm based on cooperative evolution with mu... Among the bio-inspired techniques,PSO-based clustering algorithms have received special attention. An improved method named Particle Swarm Optimization (PSO) clustering algorithm based on cooperative evolution with multi-populations was presented. It adopts cooperative evolutionary strategy with multi-populations to change the mode of traditional searching optimum solutions. It searches the local optimum and updates the whole best position (gBest) and local best position (pBest) ceaselessly. The gBest will be passed in all sub-populations. When the gBest meets the precision,the evolution will terminate. The whole clustering process is divided into two stages. The first stage uses the cooperative evolutionary PSO algorithm to search the initial clustering centers. The second stage uses the K-means algorithm. The experiment results demonstrate that this method can extract the correct number of clusters with good clustering quality compared with the results obtained from other clustering algorithms. 展开更多
关键词 particle swarm optimization (PSO) clustering algorithm cooperative evolution muiti-populations
下载PDF
Efficient Approach for Resource Allocation in WPCN Using Hybrid Optimization
12
作者 Richu Mary Thomas Malarvizhi Subramani 《Computers, Materials & Continua》 SCIE EI 2022年第7期1275-1291,共17页
The recent aggrandizement of radio frequency(RF)signals in wireless power transmission combined with energy harvesting methods have led to the replacement of traditional battery-powered wireless networks since the blo... The recent aggrandizement of radio frequency(RF)signals in wireless power transmission combined with energy harvesting methods have led to the replacement of traditional battery-powered wireless networks since the blooming RF technology provides energy renewal of wireless devices with the quality of service(QoS).In addition,it does not require any unnecessary alterations on the transmission hardware side.A hybridized global optimization technique uniting Global best and Local best(GL)based particle swarm optimization(PSO)and ant colony optimization(ACO)is proposed in this paper to optimally allocate resources in wireless powered communication networks(WPCN)through coordinated operation of communication groups,in which the wireless energy transfer and information sharing take place concomitantly by the aid of a cooperative relay positioned in between the communicating groups.The designed algorithm assists in minimizing power consumption and maximizes the weighted sum rate at the end-user side.Thus the principal target of the system is coordinated optimization of energy beamforming along with time and energy allocation to reduce the total energy consumed combined with assured information rates of the communication groups.Numerical outputs are presented to manifest the proposed system’s performance to verify the analytical results via simulations. 展开更多
关键词 Wireless powered communication networks cooperative communication RELAY hybrid optimization technique ant colony optimization particle swarm optimization
下载PDF
一种改进的CPSO-LSSVM软测量模型及其应用 被引量:21
13
作者 乔宗良 张蕾 +2 位作者 周建新 司风琪 徐治皋 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第1期234-240,共7页
针对最小二乘支持向量机(LS-SVM)在处理大规模数据集的回归和分类问题时缺少支持向量所具有的稀疏性和难以确定最佳模型参数值的问题,提出一种改进算法,利用样本间马氏距离分析样本相似程度,剔除部分相关样本,对样本集进行约简,以恢复LS... 针对最小二乘支持向量机(LS-SVM)在处理大规模数据集的回归和分类问题时缺少支持向量所具有的稀疏性和难以确定最佳模型参数值的问题,提出一种改进算法,利用样本间马氏距离分析样本相似程度,剔除部分相关样本,对样本集进行约简,以恢复LS-SVM的稀疏性,进而利用具有较强全局搜索能力的混沌粒子群优化算法(CPSO)对LS-SVM建模过程中的模型参数进行优化选择,以提高模型的拟合精度和泛化能力。将提出的改进算法用于湿法脱硫系统浆液pH值的软测量建模,给出了应用该方法的具体步骤,研究结果表明,该算法取得了较高的建模精度和泛化能力,为pH值的在线实时监测提供了一个有效手段。 展开更多
关键词 混沌粒子群优化 马氏距离 最小二乘支持向量机 稀疏性 pH值 软测量
下载PDF
CPSO-LSSVM在自回归钟差预报中的应用 被引量:6
14
作者 刘强 孙际哲 +2 位作者 陈西宏 刘继业 张群 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第3期807-811,共5页
建立了基于自回归算法的钟差预报模型,利用具有较强非线性运算能力和容错能力的最小二乘-支持向量机算法来求解自回归参数,同时利用具有快速寻优特点的粒子群算法来优化最小二乘-支持向量机参数。为了克服粒子群算法容易陷入局部极值而... 建立了基于自回归算法的钟差预报模型,利用具有较强非线性运算能力和容错能力的最小二乘-支持向量机算法来求解自回归参数,同时利用具有快速寻优特点的粒子群算法来优化最小二乘-支持向量机参数。为了克服粒子群算法容易陷入局部极值而形成早熟的缺点,提出了分别在粒子初始化位置和陷入局部极值的位置上进行混沌处理,提高了粒子搜索的遍历性和寻优能力,从整体上优化了算法。最后通过星载钟差数据对该算法进行了验证,结果表明:本文算法能够实现亚纳秒量级的预报精度并提升卫星授时导航性能。 展开更多
关键词 计算机应用 混沌粒子群 最小二乘-支持向量机 钟差预报
下载PDF
CPSO和LSSVM融合的网络入侵检测 被引量:8
15
作者 孙兰兰 宋雯斐 《计算机工程与应用》 CSCD 2013年第9期90-93,133,共5页
网络攻击具有多样性和隐蔽性,为了提高网络安全性入侵检测的正确率,提出一种混沌粒子群算法(CPSO)和最小二乘支持向量机(LSSVM)相融合的网络入侵检测方法(CPSO-LSSVM)。利用混沌粒子群算法对LSSVM模型参数进行搜索,选择LSSVM最优参数,采... 网络攻击具有多样性和隐蔽性,为了提高网络安全性入侵检测的正确率,提出一种混沌粒子群算法(CPSO)和最小二乘支持向量机(LSSVM)相融合的网络入侵检测方法(CPSO-LSSVM)。利用混沌粒子群算法对LSSVM模型参数进行搜索,选择LSSVM最优参数,采用KDDCUP99数据集对CPSO-LSSVM性能进行测试,实验结果表明,CPSO-LSSVM提高了网络入侵检测正确率,降低了误报率,可以为网络安全提供有效保证。 展开更多
关键词 混沌粒子群优化算法 最小二乘支持向量机 网络异常 检测
下载PDF
基于CPSO的二维Otsu图像分割法 被引量:5
16
作者 王忠 付阿利 《计算机工程》 CAS CSCD 北大核心 2009年第19期206-209,共4页
二维Otsu方法同时考虑了图像的灰度信息和像素间的空间邻域信息,图像分割效果好但算法计算量较大。针对上述情况,提出一种基于混沌粒子群优化算法(CPSO)的策略,将其用于二维Otsu方法中,并与标准粒子群优化算法(SPSO)进行仿真实验对比。... 二维Otsu方法同时考虑了图像的灰度信息和像素间的空间邻域信息,图像分割效果好但算法计算量较大。针对上述情况,提出一种基于混沌粒子群优化算法(CPSO)的策略,将其用于二维Otsu方法中,并与标准粒子群优化算法(SPSO)进行仿真实验对比。实验结果表明,该方法可以提高分割速度,克服SPSO的缺点,图像分割结果较理想。 展开更多
关键词 图像分割 二维OTSU方法 混沌粒子群优化算法
下载PDF
改进CPSO-SVM在人脸识别中的应用 被引量:2
17
作者 李明 孙向风 邢玉娟 《计算机工程与应用》 CSCD 北大核心 2010年第28期175-177,180,共4页
为使粒子群优化算法初始粒子均匀分布在解空间,增强全局的搜索能力,通过对混沌运动的遍历性和粒子群优化算法中惯性权重的分析,提出了一种改进型混沌粒子群算法。该算法采用Circle映射,产生了分布均匀的混沌变量轨道点,并结合动态调整... 为使粒子群优化算法初始粒子均匀分布在解空间,增强全局的搜索能力,通过对混沌运动的遍历性和粒子群优化算法中惯性权重的分析,提出了一种改进型混沌粒子群算法。该算法采用Circle映射,产生了分布均匀的混沌变量轨道点,并结合动态调整惯性权重的思想来避免粒子群算法陷入局部最优。同时,给出了应用混沌粒子群算法训练SVM的方法,并将其应用于人脸识别。仿真实验结果表明,改进CPSO-SVM方法比基本粒子群方法能获得更好的识别性能。 展开更多
关键词 支持向量机 混沌粒子群算法 惯性权重 人脸识别
下载PDF
热导传感器温度特性的CPSO-SVM数据融合校正 被引量:2
18
作者 黄为勇 童敏明 任子晖 《计算机应用》 CSCD 北大核心 2009年第12期3259-3262,共4页
为了消除环境温度对热导气体传感器的影响,提出了一种热导传感器温度特性的经典粒子群优化——支持向量机(CPSO-SVM)数据融合校正方法。该方法将热导传感器和温度传感器构成传感器组,利用支持向量机对传感器组的输出信号进行数据融合,... 为了消除环境温度对热导气体传感器的影响,提出了一种热导传感器温度特性的经典粒子群优化——支持向量机(CPSO-SVM)数据融合校正方法。该方法将热导传感器和温度传感器构成传感器组,利用支持向量机对传感器组的输出信号进行数据融合,采用经典粒子群优化算法和测试样本集均方根误差与平均绝对百分比误差同时最小原则选择和优化支持向量机的参数向量。对氢气浓度的检测实验表明,该方法能有效地改善传感器的温度特性,实现了气体浓度的精确检测。 展开更多
关键词 热导传感器 温度特性校正 支持向量机 数据融合 经典粒子群优化
下载PDF
基于CPSO-LSSVM的单轴旋转惯导系统轴向陀螺漂移辨识 被引量:2
19
作者 于旭东 张鹏飞 +1 位作者 谢元平 龙兴武 《系统工程与电子技术》 EI CSCD 北大核心 2013年第5期1049-1053,共5页
在单轴旋转惯导系统中,轴向陀螺漂移是影响系统导航精度的重要因素。为了提高惯导系统的导航精度,采用混沌粒子群算法(chaos particle swarm optimization,CPSO)优化的最小二乘支持向量机(least squaressupport vector machine,LSSVM)... 在单轴旋转惯导系统中,轴向陀螺漂移是影响系统导航精度的重要因素。为了提高惯导系统的导航精度,采用混沌粒子群算法(chaos particle swarm optimization,CPSO)优化的最小二乘支持向量机(least squaressupport vector machine,LSSVM)对轴向激光陀螺漂移进行辨识。利用初始对准12h内系统纬度误差和温度变化量作为LSSVM模型的训练数据,利用CPSO对LSSVM进行参数优化,利用优化后的LSSVM模型对轴向陀螺漂移进行辨识,轴向陀螺漂移辨识精度优于0.000 2(°)/h,系统定位误差优于1nm/72h。试验结果表明,CPSO是选取LSSVM参数的有效方法,该方法能够有效地辨识轴向陀螺漂移,具有很高的辨识精度,具有很高的实际应用价值。 展开更多
关键词 激光陀螺 惯导系统 单轴旋转 陀螺漂移 最小二乘支持向量机 混沌粒子群算法
下载PDF
基于CS-CPSO与SVM融合的WSNs入侵检测算法 被引量:3
20
作者 刘宏立 李璐 胡久松 《传感器与微系统》 CSCD 2017年第9期110-112,共3页
为了提高基本粒子群优化(PSO)算法与支持向量机(SVM)融合的无线传感网络(WSNs)入侵检测算法的检测精度与收敛速度,提出了一种基于完全正弦映射混沌粒子群优化(CS-CPSO)算法与SVM融合的WSNs入侵检测算法(CS-CPSO-SVM)。采用CS-CPSO算法优... 为了提高基本粒子群优化(PSO)算法与支持向量机(SVM)融合的无线传感网络(WSNs)入侵检测算法的检测精度与收敛速度,提出了一种基于完全正弦映射混沌粒子群优化(CS-CPSO)算法与SVM融合的WSNs入侵检测算法(CS-CPSO-SVM)。采用CS-CPSO算法优化SVM参数,不仅将正弦映射混沌搜索应用于粒子群算法中初始种群与局部最优解混沌扰动的产生,且将其用于惯性权重的优化以及随机常数和学习因子的产生,并用多个初始值分别迭代生成多条混沌轨道。以KDDCUP99数据集作为实验数据,经理论分析与仿真实验表明:该方法可以有效地检测入侵行为,并具有良好的检测精度与收敛速度。 展开更多
关键词 无线传感器网络入侵检测 正弦映射 多混沌轨道 完全正弦映射混沌粒子群优化
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部