期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Cooperative Search of UAV Swarm Based on Ant Colony Optimization with Artificial Potential Field 被引量:4
1
作者 XING Dongjing ZHEN Ziyang +1 位作者 ZHOU Chengyu GONG Huajun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第6期912-918,共7页
An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed... An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed architecture where each UAV is considered as an ant and makes decision autonomously.At each decision step,the ants choose the next gird according to the state transition rule and update its own artificial potential field and pheromone map based on the current search results.Through iterations of this process,the cooperative search of UAV swarm for mission area is realized.The state transition rule is divided into two types.If the artificial potential force is larger than a threshold,the deterministic transition rule is adopted,otherwise a heuristic transition rule is used.The deterministic transition rule can ensure UAVs to avoid the threat or approach the target quickly.And the heuristics transition rule considering the pheromone and heuristic information ensures the continuous search of area with the goal of covering more unknown area and finding more targets.Finally,simulations are carried out to verify the effectiveness of the proposed ACOAPF algorithm for cooperative search mission of UAV swarm. 展开更多
关键词 ant colony optimization artificial potential field cooperative search unmanned aerial vehicle(UAV)swarm
下载PDF
Coalition Formation for Multiple UAVs Cooperative Search and Attack with Communication Constraints in Unknown Environment 被引量:3
2
作者 Liu Zhong Gao Xiaoguang Fu Xiaowei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第6期688-699,共12页
A coalition formation algorithm is presented with limited communication ranges and delays in unknown environment,for the performance of multiple heterogeneous unmanned aerial vehicles(UAVs)in cooperative search and at... A coalition formation algorithm is presented with limited communication ranges and delays in unknown environment,for the performance of multiple heterogeneous unmanned aerial vehicles(UAVs)in cooperative search and attack missions.The mathematic model of coalition formation is built on basis of the minimum attacking time and the minimum coalition size with satisfying resources and simultaneous strikes requirements.A communication protocol based on maximum number of hops is developed to determine the potential coalition members in dynamic network.A multistage sub-optimal coalition formation algorithm(MSOCFA)with polynomial time is established.The performances of MSOCFA and particle swarm optimization(PSO)algorithms are compared in terms of complexity,mission performance and computational time.A complex scenario is deployed to illustrate how the coalitions are formed and validate the feasibility of the MSOCFA.The effect of communication constraints(hop delay and max-hops)on mission performance is studied.The results show that it is beneficial to determine potential coalition members in a wide and deep range over the network in the presence of less delay.However,when the delays are significant,it is more advantageous to determine coalitions from among the immediate neighbors. 展开更多
关键词 multi-unmmaned aerial vehicles(UAVs) cooperative search and attack coalition formation communication constraints
下载PDF
Cooperative UAV search strategy based on DMPC-AACO algorithm in restricted communication scenarios 被引量:1
3
作者 Shiyuan Chai Zhen Yang +3 位作者 Jichuan Huang Xiaoyang Li Yiyang Zhao Deyun Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期295-311,共17页
Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research pr... Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios. 展开更多
关键词 Unmanned aerial vehicles(UAV) cooperative search Restricted communication Mission planning DMPC-AACO
下载PDF
Elite Dung Beetle Optimization Algorithm for Multi-UAV Cooperative Search in Mountainous Environments
4
作者 Xiaoyong Zhang Wei Yue 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1677-1694,共18页
This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using th... This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using the target probability distribution map,two strategies of information fusion and information diffusion are employed to solve the problem of environmental information inconsistency caused by different UAVs searching different areas,thereby improving the coordination of UAV groups.Secondly,the task region is decomposed into several high-value sub-regions by using data clustering method.Based on this,a hierarchical search strategy is proposed,which allows precise or rough search in different probability areas by adjusting the altitude of the aircraft,thereby improving the search efficiency.Third,the Elite Dung Beetle Optimization Algorithm(EDBOA)is proposed based on bionics by accurately simulating the social behavior of dung beetles to plan paths that satisfy the UAV dynamics constraints and adapt to the mountainous terrain,where the mountain is considered as an obstacle to be avoided.Finally,the objective function for path optimization is formulated by considering factors such as coverage within the task region,smoothness of the search path,and path length.The effectiveness and superiority of the proposed schemes are verified by the simulation. 展开更多
关键词 Mountainous environment Multi-UAV cooperative search Environment information consistency Elite dung beetle optimization algorithm(EDBOA) Path planning
原文传递
Optimal search path planning of UUV in battlefeld ambush scene
5
作者 Wei Feng Yan Ma +3 位作者 Heng Li Haixiao Liu Xiangyao Meng Mo Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期541-552,共12页
Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical ... Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat. 展开更多
关键词 Battlefield ambush Optimal search path planning UUV path Planning Probability of cooperative search
下载PDF
Optimization Task Scheduling Using Cooperation Search Algorithm for Heterogeneous Cloud Computing Systems 被引量:1
6
作者 Ahmed Y.Hamed M.Kh.Elnahary +1 位作者 Faisal S.Alsubaei Hamdy H.El-Sayed 《Computers, Materials & Continua》 SCIE EI 2023年第1期2133-2148,共16页
Cloud computing has taken over the high-performance distributed computing area,and it currently provides on-demand services and resource polling over the web.As a result of constantly changing user service demand,the ... Cloud computing has taken over the high-performance distributed computing area,and it currently provides on-demand services and resource polling over the web.As a result of constantly changing user service demand,the task scheduling problem has emerged as a critical analytical topic in cloud computing.The primary goal of scheduling tasks is to distribute tasks to available processors to construct the shortest possible schedule without breaching precedence restrictions.Assignments and schedules of tasks substantially influence system operation in a heterogeneous multiprocessor system.The diverse processes inside the heuristic-based task scheduling method will result in varying makespan in the heterogeneous computing system.As a result,an intelligent scheduling algorithm should efficiently determine the priority of every subtask based on the resources necessary to lower the makespan.This research introduced a novel efficient scheduling task method in cloud computing systems based on the cooperation search algorithm to tackle an essential task and schedule a heterogeneous cloud computing problem.The basic idea of thismethod is to use the advantages of meta-heuristic algorithms to get the optimal solution.We assess our algorithm’s performance by running it through three scenarios with varying numbers of tasks.The findings demonstrate that the suggested technique beats existingmethods NewGenetic Algorithm(NGA),Genetic Algorithm(GA),Whale Optimization Algorithm(WOA),Gravitational Search Algorithm(GSA),and Hybrid Heuristic and Genetic(HHG)by 7.9%,2.1%,8.8%,7.7%,3.4%respectively according to makespan. 展开更多
关键词 Heterogeneous processors cooperation search algorithm task scheduling cloud computing
下载PDF
Adaptive Fractional-Order PID Control for VSC-HVDC Systems via Cooperative Beetle Antennae Search with Offshore Wind Integration
7
作者 Pulin Cao Haoran Fan Zilong Cai 《Energy Engineering》 EI 2021年第2期265-284,共20页
Since the voltage source converter based high voltage direct current(VSC-HVDC)systems owns the features of nonlinearity,strong coupling and multivariable,the classical proportional integral(PI)control is hard to obtai... Since the voltage source converter based high voltage direct current(VSC-HVDC)systems owns the features of nonlinearity,strong coupling and multivariable,the classical proportional integral(PI)control is hard to obtain content control effect.Hence,a new perturbation observer based fractional-order PID(PoFoPID)control strategy is designed in this paper for(VSC-HVDC)systems with offshore wind integration,which can efficiently boost the robustness and control performance of entire system.Particularly,it employs a fractional-order PID(FoPID)fra-mework for the sake of compensating the perturbation estimate,which dramatically boost the dynamical responds of the closed-loop system,and the cooperative beetle antennae search(CBAS)algorithm is adopted to quickly and effi-ciently search its best control parameters.Besides,CBAS algorithm is able to efficiently escape a local optimum because of a suitable trade-off between global exploration and local exploitation can be realized.At last,comprehensive case studies are carried out,namely,active and reactive power tracking,5-cycle line-line-line-ground(LLLG)fault,and offshore wind farm integration.Simulation results validate superiorities and effectiveness of PoFoPID control in com-parison of that of PID control and feedback linearization sliding-mode control(FLSMC),respectively. 展开更多
关键词 Perturbation observer based fractional-order PID VSC-HVDC system cooperative beetle antennae search offshore wind integration
下载PDF
A multi-dimensional tabu search algorithm for the optimization of process planning 被引量:6
8
作者 LIAN KunLei ZHANG ChaoYong +1 位作者 SHAO XinYu ZENG YaoHui 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第12期3211-3219,共9页
Computer-aided process planning (CAPP) is an essential component of computer integrated manufacturing (CIM) system. A good process plan can be obtained by optimizing two elements, namely, operation sequence and th... Computer-aided process planning (CAPP) is an essential component of computer integrated manufacturing (CIM) system. A good process plan can be obtained by optimizing two elements, namely, operation sequence and the machining parameters of machine, tool and tool access direction (TAD) for each operation. This paper proposes a novel optimization strategy for process planning that considers different dimensions of the problem in parallel. A multi-dimensional tabu search (MDTS) algo-rithm based on this strategy is developed to optimize the four dimensions of a process plan, namely, operation sequence (OperSeq), machine sequence (MacSeq), tool sequence (TooISeq) and tool approach direction sequence (TADSeq), sequentially and iteratively. In order to improve its efficiency and stability, tabu search, which is incorporated into the proposed MDTS al- gorithm, is used to optimize each component of a process plan, and some neighbourhood strategies for different components are presented for this tabu search algorithm. The proposed MDTS algorithm is employed to test four parts with different numbers of operations taken from the literature and compared with the existing algorithms like genetic algorithm (GA), simulated annealing (SA), tabu search (TS) and particle swarm optimization (PSO). Experimental results show that the developed algo-rithm outperforms these algorithms in terms of solution quality and efficiency. 展开更多
关键词 process planning cooperative tabu search genetic algorithm simulated annealing particle swarm optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部