期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Cooperative task allocation for heterogeneous multi-UAV using multi-objective optimization algorithm 被引量:24
1
作者 WANG Jian-feng JIA Gao-wei +1 位作者 LIN Jun-can HOU Zhong-xi 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期432-448,共17页
The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper coo... The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments. 展开更多
关键词 unmanned aerial vehicles cooperative task allocation HETEROGENEOUS CONSTRAINT multi-objective optimization solution evaluation method
下载PDF
Research on a Task Planning Method for Multi-Ship Cooperative Driving 被引量:4
2
作者 CHEN Yaojie XIANG Shanshan CHEN Feixiang 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第2期233-242,共10页
A new method for a cooperative multi-task allocation problem(CMTAP) is proposed in this paper,taking into account the multi-ship, multi-target, multi-task and multi-constraint characteristics in a multi-ship cooperati... A new method for a cooperative multi-task allocation problem(CMTAP) is proposed in this paper,taking into account the multi-ship, multi-target, multi-task and multi-constraint characteristics in a multi-ship cooperative driving(MCD) system. On the basis of the general CMTAP model, an MCD task assignment model is established. Furthermore, a genetic ant colony hybrid algorithm(GACHA) is proposed for this model using constraints, including timing constraints, multi-ship collaboration constraints and ship capacity constraints. This algorithm uses a genetic algorithm(GA) based on a task sequence, while the crossover and mutation operators are based on similar tasks. In order to reduce the dependence of the GA on the initial population, an ant colony algorithm(ACA) is used to produce the initial population. In order to meet the environmental constraints of ship navigation, the results of the task allocation and path planning are combined to generate an MCD task planning scheme. The results of a simulated experiment using simulated data show that the proposed method can make the assignment more optimized on the basis of satisfying the task assignment constraints and the ship navigation environment constraints. Moreover, the experimental results using real data also indicate that the proposed method can find the optimal solution rapidly, and thus improve the task allocation efficiency. 展开更多
关键词 multi-ship cooperative task allocation path planning MULTI-task MULTI-OBJECTIVE genetic ant colony hybrid algorithm(GACHA)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部