This study explores the quasi-real time inversion principle and precision estimation of three-dimensional coordinates of the epicenter, trigger time and magnitude of earthquakes with the aim to improve traditional met...This study explores the quasi-real time inversion principle and precision estimation of three-dimensional coordinates of the epicenter, trigger time and magnitude of earthquakes with the aim to improve traditional methods, which are flawed due to missing information or distortion in the seismograph records. The epicenter, trigger time and magnitude from the Lushan earthquake are inverted and analyzed based on high-frequency GNSS data. The inversion results achieved a high precision, which are consistent with the data published by the China Earthquake Administration. Moreover, it has been proven that the inversion method has good theoretical value and excellent application prospects.展开更多
Construction material offcuts is a data problem that can largely be avoided by dimensional coordination during concept design.Besides the environmental benefits,early phase coordination is beneficial to the overall de...Construction material offcuts is a data problem that can largely be avoided by dimensional coordination during concept design.Besides the environmental benefits,early phase coordination is beneficial to the overall design process as it integrates information not typically considered until later in the design process.However,taking reality-changing actions is often challenged by uncertainty,time constraints,and lack of integration of available tools.Acknowledging the potential of computational design in enabling architects to manage design and coordination complexities and taking plasterboard opportunities for dimensional coordination,the paper presents a review and assessment of the existing methods to interrogate what,when,and how are these adaptable to the task.The study shows that ML-based methods outperform other methods and concludes that leveraging computational design powers to reduce offcuts is not a question of a tool,but one of a strategy.Eventually,the future steps to achieving such a strategy are discussed.展开更多
Fractals are essentially characterized by their self-similarity at different scales and non-integer Hausdorff dimensions[1],while crystals always show certain symmetries and discrete diffraction diagrams[2].Thus,a fra...Fractals are essentially characterized by their self-similarity at different scales and non-integer Hausdorff dimensions[1],while crystals always show certain symmetries and discrete diffraction diagrams[2].Thus,a fractal crystal by definition must be identical at all scales with a compatible symmetry with crystals.Although fractals,e.g.snowflakes,trees,coastlines and blood-vascular systems,展开更多
基金National Natural Science Foundation under Grant No.51574201Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)under Grant No.SKLGP2016K017+2 种基金Open Research Fund by Sichuan Engineering Research Center for Emergency Mapping&Disaster Reduction under Grant No.K2015B008The State Administration of Work Safety under Grant No.2014_3335Soft Science Research Projects in Sichuan Province under Grant No.2015zr0049
文摘This study explores the quasi-real time inversion principle and precision estimation of three-dimensional coordinates of the epicenter, trigger time and magnitude of earthquakes with the aim to improve traditional methods, which are flawed due to missing information or distortion in the seismograph records. The epicenter, trigger time and magnitude from the Lushan earthquake are inverted and analyzed based on high-frequency GNSS data. The inversion results achieved a high precision, which are consistent with the data published by the China Earthquake Administration. Moreover, it has been proven that the inversion method has good theoretical value and excellent application prospects.
文摘Construction material offcuts is a data problem that can largely be avoided by dimensional coordination during concept design.Besides the environmental benefits,early phase coordination is beneficial to the overall design process as it integrates information not typically considered until later in the design process.However,taking reality-changing actions is often challenged by uncertainty,time constraints,and lack of integration of available tools.Acknowledging the potential of computational design in enabling architects to manage design and coordination complexities and taking plasterboard opportunities for dimensional coordination,the paper presents a review and assessment of the existing methods to interrogate what,when,and how are these adaptable to the task.The study shows that ML-based methods outperform other methods and concludes that leveraging computational design powers to reduce offcuts is not a question of a tool,but one of a strategy.Eventually,the future steps to achieving such a strategy are discussed.
文摘Fractals are essentially characterized by their self-similarity at different scales and non-integer Hausdorff dimensions[1],while crystals always show certain symmetries and discrete diffraction diagrams[2].Thus,a fractal crystal by definition must be identical at all scales with a compatible symmetry with crystals.Although fractals,e.g.snowflakes,trees,coastlines and blood-vascular systems,