期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Analytical solution for the time-fractional heat conduction equation in spherical coordinate system by the method of variable separation 被引量:2
1
作者 Ting-Hui Ning Xiao-Yun Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期994-1000,共7页
In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve ... In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 〈 α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative. 展开更多
关键词 Fractional Fourier law Fractional heat conduction equation - Spherical coordinate system - The separation of variables Mittag-Leffler function
下载PDF
Solution for Output Coordination Equations of Several Typical Parallel Six-Dimensional Acceleration Sensing Mechanisms
2
作者 ZHANG Xianzhu YOU Jingjing ZHANG Yuanwei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期96-102,共7页
Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanism... Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements. 展开更多
关键词 six-dimensional acceleration sensor parallel mechanism topological configuration coordination equation dynamics
下载PDF
A BFG model for calculation of tidal current and diffusion of pollutants in nearshore areas 被引量:3
3
作者 Shi Fengyan and Zheng Lianyuan(State Key Laboratory of Estuarine and  ̄tal Research, Institute of Estuarine and Coastal Research, East China NOrmalUniversity, Shanghai 200062, China)(Department of Marine audiences, the University of georgia. Athens. GA 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1996年第3期283-296,共14页
This study presents a boundary-fitted grid (BFG) numerical model with an aim to simulate the tidal currents and diffusion of pollutants in complicated nearshore areas. To suit the general model to any curvilinear grid... This study presents a boundary-fitted grid (BFG) numerical model with an aim to simulate the tidal currents and diffusion of pollutants in complicated nearshore areas. To suit the general model to any curvilinear grids, generalized 2-D shallow sea dynamic equations and the advection diffusion equation are derived in curvilinear coordinates, and the contravariant components of the velocity vector are adopted for easily realizing boundary conditions and making the equations conservational. As the generalized equations are not limited by a speCific coordinate transformation. a self-adaptive grid generation method is then proposed conveniently to generate a boundary-fitted and varying SPacing grid.The calculation in the Yangpu Bay and the Xinying Bay shows that this is an effective model for calculating tidal currents and diffusion of pollutants in the more complicated nearshore areas. 展开更多
关键词 BFG model numerical calculation shallow sea equations and advection diffusion equation in curvilinear coordinates
下载PDF
HIGH ACCURACY ARITHMETIC AVERAGE TYPE DISCRETIZATION FOR THE SOLUTION OF TWO-SPACE DIMENSIONAL NONLINEAR WAVE EQUATIONS
4
作者 R.K.MOHANTY VENU GOPAL 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2012年第2期1-18,共18页
In this paper,we propose a new high accuracy discretization based on the ideas given by Chawla and Shivakumar for the solution of two-space dimensional nonlinear hyper-bolic partial differential equation of the form u... In this paper,we propose a new high accuracy discretization based on the ideas given by Chawla and Shivakumar for the solution of two-space dimensional nonlinear hyper-bolic partial differential equation of the form utt=A(x,y,t)uxx+B(x,y,t)uyy+g(x,y,t,u,ux,uy,ut),0<x,y<1,t>0 subject to appropriate initial and Dirichlet boundary conditions.We use only five evaluations of the function g and do not require any fictitious points to discretize the differential equation.The proposed method is directly applicable to wave equation in polar coordinates and when applied to a linear telegraphic hyperbolic equation is shown to be unconditionally stable.Numerical results are provided to illustrate the usefulness of the proposed method. 展开更多
关键词 Nonlinear hyperbolic equation variable coefficients arithmetic average type approximation wave equation in polar coordinates van der Pol equation telegraphic equation maximum absolute errors.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部