Traditional model for calculating performance parameters of a fix-pad journal bearing leads to heavy workload, complicated and changeable formulae as it requires deriving various geometric formulae with different bear...Traditional model for calculating performance parameters of a fix-pad journal bearing leads to heavy workload, complicated and changeable formulae as it requires deriving various geometric formulae with different bearing types such as circular journal bearing, dislocated bearing and elliptic bearing. Considering different pad preload ratios for non-standard bearing, traditional model not only becomes more complicated but also reduces scalability and promotion of the calculation programs. For the complexly case of traditional model while dealing with various fix-pad journal bearings, unified coordinate system model for performance calculation of fix-pad journal bearing is presented in the paper. A unified coordinate system with the bearing center at the origin is established, and the eccentricity ratio and attitude angle of axis relative to each pad are calculated through the coordinates of journal center and each pad center. Geometric description of fix-pad journal bearing is unified in this model, which can be used for both various standard bearing and non-standard bearing with different pad preload ratios. Validity of this model is verified with an elliptical bearing. Performance of a non-standard four-leaf bearing with different pad preload ratios is calculated based on this model. The calculation result shows that increasing preload ratio of the pad 1 and keeping that of the left three pads constant improves bearing capacity, stiffness and damping coefficients. This research presents a unified coordinate system model unifies performance calculation of fix-pad journal bearings and studied a non-standard four-leaf bearing with different pad preload ratios, the research conclusions provides new methods for performance calculation of fix-pad journal bearings.展开更多
传统的误差配准算法假设系统偏差恒定或缓慢变化,当系统误差发生突变或快速变化时,这一假设不再成立。针对这一问题,研究了时变条件下的误差配准算法,引入渐消因子,对常规的基于地心地固坐标系的广义最小二乘算法(generalized least squ...传统的误差配准算法假设系统偏差恒定或缓慢变化,当系统误差发生突变或快速变化时,这一假设不再成立。针对这一问题,研究了时变条件下的误差配准算法,引入渐消因子,对常规的基于地心地固坐标系的广义最小二乘算法(generalized least squares algorithm based on the earth-centered earth-fixed coordinate system,ECEF-GLS)进行了修正,弱化历史量测对配准的影响,并对渐消因子的选取问题进行了研究,给出了合理的设计方法。算法验证表明,基于渐消因子的ECEF-GLS估计算法能够对时变的系统偏差进行有效估计,精度满足配准要求。展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51275395)Major National Basic Research Development Program of China(973 Program,Grant Nos.2009CB724304-2,2009CB724404)
文摘Traditional model for calculating performance parameters of a fix-pad journal bearing leads to heavy workload, complicated and changeable formulae as it requires deriving various geometric formulae with different bearing types such as circular journal bearing, dislocated bearing and elliptic bearing. Considering different pad preload ratios for non-standard bearing, traditional model not only becomes more complicated but also reduces scalability and promotion of the calculation programs. For the complexly case of traditional model while dealing with various fix-pad journal bearings, unified coordinate system model for performance calculation of fix-pad journal bearing is presented in the paper. A unified coordinate system with the bearing center at the origin is established, and the eccentricity ratio and attitude angle of axis relative to each pad are calculated through the coordinates of journal center and each pad center. Geometric description of fix-pad journal bearing is unified in this model, which can be used for both various standard bearing and non-standard bearing with different pad preload ratios. Validity of this model is verified with an elliptical bearing. Performance of a non-standard four-leaf bearing with different pad preload ratios is calculated based on this model. The calculation result shows that increasing preload ratio of the pad 1 and keeping that of the left three pads constant improves bearing capacity, stiffness and damping coefficients. This research presents a unified coordinate system model unifies performance calculation of fix-pad journal bearings and studied a non-standard four-leaf bearing with different pad preload ratios, the research conclusions provides new methods for performance calculation of fix-pad journal bearings.
文摘传统的误差配准算法假设系统偏差恒定或缓慢变化,当系统误差发生突变或快速变化时,这一假设不再成立。针对这一问题,研究了时变条件下的误差配准算法,引入渐消因子,对常规的基于地心地固坐标系的广义最小二乘算法(generalized least squares algorithm based on the earth-centered earth-fixed coordinate system,ECEF-GLS)进行了修正,弱化历史量测对配准的影响,并对渐消因子的选取问题进行了研究,给出了合理的设计方法。算法验证表明,基于渐消因子的ECEF-GLS估计算法能够对时变的系统偏差进行有效估计,精度满足配准要求。