No shale-rock physical model has been established in the observation coordinate system.To this end,this paper carried out anisotropic wave velocity tests on shale rock and compared the Thomsen,Daley,and Berryman solut...No shale-rock physical model has been established in the observation coordinate system.To this end,this paper carried out anisotropic wave velocity tests on shale rock and compared the Thomsen,Daley,and Berryman solutions to characterize anisotropic acoustic wave velocity.Finally,the Daley solution was selected.Based on basic rock physical models,such as SCA and DEM methods,and combined with the Daley solution,an anisotropic shale-rock physical model was established in the observation coordinate system and applied in Well B1 in the Luzhou area,Sichuan Basin.Our research conclusions were as follows:1.for the samples from the same core,the P-wave velocities in three directions were in the order VP11>VP45>VP33,shear wave velocity VS11 was the largest,but VS33 and VS45 did not follow the law of Vs33>Vs45 for some samples;2.the Daley solution,which not only considers the accuracy requirements but also has a complete expression of P-,SV-,and SH-waves,is most suitable for characterization of anisotropic wave velocity in this study area;3.the rock physical model constructed in the observation coordinate system has high accuracy,in which the absolute value of the relative error of the P-wave slowness was between 0%and 5.05%(0.55%on average),and that of shear-wave slowness was between 0%and 6.05%(0.59%on average);4.the acoustic waves recorded in Well B1 in the observation coordinate system were very different from those in the constitutive coordinate system.The relative difference of the P-wave was between 6.76%and 30.84%(14.68%on average),and that of the S-wave was between 7.00%and 23.44%(13.99%on average).The acoustic slowness measured in the observation coordinate system,such as in a deviated well or a horizontal well section,must be converted to the constitutive coordinate system before it can be used in subsequent engineering applications;5.the anisotropic shale-rock physical model built in the observation coordinate system proposed in this paper can provide basic data and guidance for subsequent pore pressure prediction,geomechanical modeling,and fracturing stimulation design for deviated and horizontal wells.展开更多
Assessing large-scale patterns of gross primary production (GPP) in arid and semi-arid (ASA) areas is important for both scientific and practical purposes.Remote sensing-based models,which integrate satellite data wit...Assessing large-scale patterns of gross primary production (GPP) in arid and semi-arid (ASA) areas is important for both scientific and practical purposes.Remote sensing-based models,which integrate satellite data with input from ground-based meteorological measurements and vegetation characteristics,improve spatially extended estimates of vegetation productivity with high accuracy.In this study,the authors simulated GPP in ASA areas by integrating moderate resolution imaging spectral radiometer (MODIS) data with eddy covariance and meteorological measurements at the flux tower sites using the Vegetation Photosynthesis Model (VPM),which is a remote sensing-based model for analyzing the spatial pattern of GPP in different land cover types.The field data were collected by coordinating observations at nine stations in 2008.The results indicate that in the region during the growing season GPP was highest in cropland sites,second highest in woodland sites,and lowest in grassland sites.VPM captured the temporal and spatial characteristics of GPP for different land covers in ASA areas.Further,Enhanced Vegetation Index (EVI) had a strong liner relationship with GPP in densely vegetated areas,while the Normalized Difference Vegetation Index (NDVI) had a strong liner relationship with GPP over less dense vegetation.This study demonstrates the potential of satellite-driven models for scaling-up GPP,which is a key component for studying the carbon cycle at regional and global scales.展开更多
Eddy Covariance technique(EC) achieves the direct measurement on ecosystem carbon, nitrogen and water fluxes, and it provides scientific data for accurately assessing ecosystem functions in mitigating global climate c...Eddy Covariance technique(EC) achieves the direct measurement on ecosystem carbon, nitrogen and water fluxes, and it provides scientific data for accurately assessing ecosystem functions in mitigating global climate change. This paper briefly reviewed the construction and development of Chinese terrestrial ecosystem flux observation and research network(China FLUX), and systematically introduced the design principle and technology of the terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation system of China FLUX. In addition, this paper summarized the main progress of China FLUX in the ecosystem carbon, nitrogen and water exchange and environmental controlling mechanisms, the spatial pattern of carbon, nitrogen and water fluxes and biogeographical mechanisms, and the regional terrestrial ecosystem carbon budget assessment. Finally, the prospects and emphases of the terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation of China FLUX are put forward to provide theoretical references for the development of flux observation and research in China.展开更多
In this study,the authors evaluated two re-motely sensed surface soil moisture datasets derived from the Advanced Microwave Scanning Radiometer of the Earth Observing System (AMSR-E) over northern China.The soil moist...In this study,the authors evaluated two re-motely sensed surface soil moisture datasets derived from the Advanced Microwave Scanning Radiometer of the Earth Observing System (AMSR-E) over northern China.The soil moisture datasets were derived from algorithms developed by the National Snow and Ice Data Center (NSIDC) and jointly developed by the Vrije Universiteit Amsterdam and NASA Goddard Space Flight Center (VUA-NASA).The NSIDC and VUA-NASA products were compared to in situ soil moisture data from nine enhanced coordinated observation stations.The VUA-NASA dataset presented a strong correlation with top layer in situ soil moisture observations,and the correla-tion coefficients ranged from 0.34 to 0.73 (p<0.01).The correlation coefficients decreased as the observed soil layer depth increased.The correlation coefficients be-tween the NSIDC retrievals and the top layer in situ ob-servations were between 0.10 and 0.62 (p<0.01).Fur-thermore,VUA-NASA soil moisture variations agreed well with in situ soil moisture dynamics and responded sensitively to precipitation events.In contrast,the NSIDC dataset failed to capture signals of soil moisture dynamics.The analyses demonstrated that the VUA-NASA product was capable of representing soil moisture conditions over northern China.展开更多
When there exists anisotropy in underground media elastic parameters of the observed coordinate possibly do not coincide with that of the natural coordinate. According to the theory that the density of potential energ...When there exists anisotropy in underground media elastic parameters of the observed coordinate possibly do not coincide with that of the natural coordinate. According to the theory that the density of potential energy, dissipating energy is independent of the coordinate, the relationship of elastic parameters between two coordinates is derived for two-phase anisotropic media. Then, pseudospectral method to solve wave equations of two-phase anisotropic media is derived. At last, we use this method to simulate wave propagation in two-phase anisotropic media four types of waves are observed in the snapshots, i.e., fast P wave and slow P wave, fast S wave and slow S wave. Shear wave splitting, SV wave cusps and elastic wave reflection and transmission are also observed.展开更多
This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles(AUVs) in the presence of wave disturbances. An approximate optimal tracking control(AOTC) approach i...This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles(AUVs) in the presence of wave disturbances. An approximate optimal tracking control(AOTC) approach is proposed. Firstly, a six-degrees-of-freedom(six-DOF) AUV model with its body-fixed coordinate system is decoupled and simplified and then a nonlinear control model of AUVs in the vertical plane is given. Also, an exosystem model of wave disturbances is constructed based on Hirom approximation formula. Secondly, the time-parameterized desired trajectory which is tracked by the AUV's system is represented by the exosystem. Then, the coupled two-point boundary value(TPBV) problem of optimal tracking control for AUVs is derived from the theory of quadratic optimal control. By using a recently developed successive approximation approach to construct sequences, the coupled TPBV problem is transformed into a problem of solving two decoupled linear differential sequences of state vectors and adjoint vectors. By iteratively solving the two equation sequences, the AOTC law is obtained, which consists of a nonlinear optimal feedback item, an expected output tracking item, a feedforward disturbances rejection item, and a nonlinear compensatory term. Furthermore, a wave disturbances observer model is designed in order to solve the physically realizable problem. Simulation is carried out by using the Remote Environmental Unit(REMUS) AUV model to demonstrate the effectiveness of the proposed algorithm.展开更多
Many observational studies have shown that deformation, like vertical vorticity and divergence, is closely related to the occurrence and distribution of strong precipitation. In this paper, to involve deformation in p...Many observational studies have shown that deformation, like vertical vorticity and divergence, is closely related to the occurrence and distribution of strong precipitation. In this paper, to involve deformation in precipitation diagnosis, a new parameter called potential deformation(PD) is derived and then applied to precipitation detection within a simulated mesoscale convective system(MCS). It is shown that PD includes both stretching deformation and shearing deformation and shares similar characteristics with deformation insofar as it does not change with the rotating coordinate. Diagnosis of the simulated MCS reveals that PD performs well in tracing the MCS' precipitation. In terms of their distributional pattern, the large-value areas of PD are similar to the precipitation in the different development stages of the MCS. A detailed analysis of the physical processes contained within the PD shows that it can reflect the three-dimensional moisture variation,vertical wind shear and wind deformation within the MCS. These structures are usually a comprehensive reflection of the characteristics of the surface cold pool, rear inflow jet, downward cold air flow and upward warm moist flow within the precipitating convective cells. For this reason, the PD shows much stronger anomalies in the precipitating atmosphere than the non-precipitating atmosphere, which implies considerable potential for its application in detecting heavy precipitation within MCSs.展开更多
For most hierarchical triple stars, the classical double two-body model of zeroth-order cannot describe the motions of the components under the current observational accuracy. In this paper, Marchal's first-order ana...For most hierarchical triple stars, the classical double two-body model of zeroth-order cannot describe the motions of the components under the current observational accuracy. In this paper, Marchal's first-order analytical solution is implemented and a more efficient simplified version is applied to real triple stars. The results show that, for most triple stars, the proposed first-order model is preferable to the zerothorder model both in fitting observational data and in predicting component positions.展开更多
Previous studies have shown that EMIC waves occur preferentially in the afternoon sector of the magnetosphere.Here we report obliquely propagating H^(+)and He^(+)band EMIC waves detected by Van Allen Probe B in the re...Previous studies have shown that EMIC waves occur preferentially in the afternoon sector of the magnetosphere.Here we report obliquely propagating H^(+)and He^(+)band EMIC waves detected by Van Allen Probe B in the region of MLT=22.7–23.5 during the June 20,2013 substorm.Using the correlated energetic proton data,we present continuous calculations on EMIC wave growth rates along the inward orbit in the region L=5.5–4.2.The modeled growth rate shows remarkable agreement with the observed double band EMIC waves in both temporal and spatial evolutions.The current results demonstrate that H^(+)and He^(+)band EMIC waves can be simultaneously excited in the midnight sector under appropriate conditions.展开更多
基金supported by the Post Doctoral Project of Southwest Oil and Gas Field Research on Geomechanics and Effective Fracturing Factors of Deep Shale” (No. 20210302-31)the Scientific Research Project of Southwest Oil and Gas Field Branch “Geological Engineering Integration of Well Block Yang101”。
文摘No shale-rock physical model has been established in the observation coordinate system.To this end,this paper carried out anisotropic wave velocity tests on shale rock and compared the Thomsen,Daley,and Berryman solutions to characterize anisotropic acoustic wave velocity.Finally,the Daley solution was selected.Based on basic rock physical models,such as SCA and DEM methods,and combined with the Daley solution,an anisotropic shale-rock physical model was established in the observation coordinate system and applied in Well B1 in the Luzhou area,Sichuan Basin.Our research conclusions were as follows:1.for the samples from the same core,the P-wave velocities in three directions were in the order VP11>VP45>VP33,shear wave velocity VS11 was the largest,but VS33 and VS45 did not follow the law of Vs33>Vs45 for some samples;2.the Daley solution,which not only considers the accuracy requirements but also has a complete expression of P-,SV-,and SH-waves,is most suitable for characterization of anisotropic wave velocity in this study area;3.the rock physical model constructed in the observation coordinate system has high accuracy,in which the absolute value of the relative error of the P-wave slowness was between 0%and 5.05%(0.55%on average),and that of shear-wave slowness was between 0%and 6.05%(0.59%on average);4.the acoustic waves recorded in Well B1 in the observation coordinate system were very different from those in the constitutive coordinate system.The relative difference of the P-wave was between 6.76%and 30.84%(14.68%on average),and that of the S-wave was between 7.00%and 23.44%(13.99%on average).The acoustic slowness measured in the observation coordinate system,such as in a deviated well or a horizontal well section,must be converted to the constitutive coordinate system before it can be used in subsequent engineering applications;5.the anisotropic shale-rock physical model built in the observation coordinate system proposed in this paper can provide basic data and guidance for subsequent pore pressure prediction,geomechanical modeling,and fracturing stimulation design for deviated and horizontal wells.
基金supported by the National Basic Research Program of China (Grant Nos. 2009CB723904 and 2006CB400500)
文摘Assessing large-scale patterns of gross primary production (GPP) in arid and semi-arid (ASA) areas is important for both scientific and practical purposes.Remote sensing-based models,which integrate satellite data with input from ground-based meteorological measurements and vegetation characteristics,improve spatially extended estimates of vegetation productivity with high accuracy.In this study,the authors simulated GPP in ASA areas by integrating moderate resolution imaging spectral radiometer (MODIS) data with eddy covariance and meteorological measurements at the flux tower sites using the Vegetation Photosynthesis Model (VPM),which is a remote sensing-based model for analyzing the spatial pattern of GPP in different land cover types.The field data were collected by coordinating observations at nine stations in 2008.The results indicate that in the region during the growing season GPP was highest in cropland sites,second highest in woodland sites,and lowest in grassland sites.VPM captured the temporal and spatial characteristics of GPP for different land covers in ASA areas.Further,Enhanced Vegetation Index (EVI) had a strong liner relationship with GPP in densely vegetated areas,while the Normalized Difference Vegetation Index (NDVI) had a strong liner relationship with GPP over less dense vegetation.This study demonstrates the potential of satellite-driven models for scaling-up GPP,which is a key component for studying the carbon cycle at regional and global scales.
基金Science and Technology Service Network Initiative of CAS,No.KFJ-SW-STS-169National Natural Science Foundation of China,No.31420103917
文摘Eddy Covariance technique(EC) achieves the direct measurement on ecosystem carbon, nitrogen and water fluxes, and it provides scientific data for accurately assessing ecosystem functions in mitigating global climate change. This paper briefly reviewed the construction and development of Chinese terrestrial ecosystem flux observation and research network(China FLUX), and systematically introduced the design principle and technology of the terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation system of China FLUX. In addition, this paper summarized the main progress of China FLUX in the ecosystem carbon, nitrogen and water exchange and environmental controlling mechanisms, the spatial pattern of carbon, nitrogen and water fluxes and biogeographical mechanisms, and the regional terrestrial ecosystem carbon budget assessment. Finally, the prospects and emphases of the terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation of China FLUX are put forward to provide theoretical references for the development of flux observation and research in China.
基金supported by the National Basic Research Program of China (Grant No.2009CB723904)
文摘In this study,the authors evaluated two re-motely sensed surface soil moisture datasets derived from the Advanced Microwave Scanning Radiometer of the Earth Observing System (AMSR-E) over northern China.The soil moisture datasets were derived from algorithms developed by the National Snow and Ice Data Center (NSIDC) and jointly developed by the Vrije Universiteit Amsterdam and NASA Goddard Space Flight Center (VUA-NASA).The NSIDC and VUA-NASA products were compared to in situ soil moisture data from nine enhanced coordinated observation stations.The VUA-NASA dataset presented a strong correlation with top layer in situ soil moisture observations,and the correla-tion coefficients ranged from 0.34 to 0.73 (p<0.01).The correlation coefficients decreased as the observed soil layer depth increased.The correlation coefficients be-tween the NSIDC retrievals and the top layer in situ ob-servations were between 0.10 and 0.62 (p<0.01).Fur-thermore,VUA-NASA soil moisture variations agreed well with in situ soil moisture dynamics and responded sensitively to precipitation events.In contrast,the NSIDC dataset failed to capture signals of soil moisture dynamics.The analyses demonstrated that the VUA-NASA product was capable of representing soil moisture conditions over northern China.
文摘When there exists anisotropy in underground media elastic parameters of the observed coordinate possibly do not coincide with that of the natural coordinate. According to the theory that the density of potential energy, dissipating energy is independent of the coordinate, the relationship of elastic parameters between two coordinates is derived for two-phase anisotropic media. Then, pseudospectral method to solve wave equations of two-phase anisotropic media is derived. At last, we use this method to simulate wave propagation in two-phase anisotropic media four types of waves are observed in the snapshots, i.e., fast P wave and slow P wave, fast S wave and slow S wave. Shear wave splitting, SV wave cusps and elastic wave reflection and transmission are also observed.
基金supported in part by the National Natural Science Foundation of China (41276085)the Natural Science Foundation of Shandong Province (ZR2015FM004)
文摘This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles(AUVs) in the presence of wave disturbances. An approximate optimal tracking control(AOTC) approach is proposed. Firstly, a six-degrees-of-freedom(six-DOF) AUV model with its body-fixed coordinate system is decoupled and simplified and then a nonlinear control model of AUVs in the vertical plane is given. Also, an exosystem model of wave disturbances is constructed based on Hirom approximation formula. Secondly, the time-parameterized desired trajectory which is tracked by the AUV's system is represented by the exosystem. Then, the coupled two-point boundary value(TPBV) problem of optimal tracking control for AUVs is derived from the theory of quadratic optimal control. By using a recently developed successive approximation approach to construct sequences, the coupled TPBV problem is transformed into a problem of solving two decoupled linear differential sequences of state vectors and adjoint vectors. By iteratively solving the two equation sequences, the AOTC law is obtained, which consists of a nonlinear optimal feedback item, an expected output tracking item, a feedforward disturbances rejection item, and a nonlinear compensatory term. Furthermore, a wave disturbances observer model is designed in order to solve the physically realizable problem. Simulation is carried out by using the Remote Environmental Unit(REMUS) AUV model to demonstrate the effectiveness of the proposed algorithm.
基金supported by the Special Scientific Research Fund of the Meteorological Public Welfare of the Ministry of Sciences and Technology (Grant No. GYHY201406002, GYHY201406001)National Key Technology Support Program (Grant No. 2015BAC03B04)+4 种基金a National Program on Key Basic Research project (Grant No. 2013CB430105)the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91437215)the National Natural Science Foundation of China (Grant Nos. 41505040, 41375052 41405055 and 41575065)the Open Project of the State Key Laboratory of Severe Weather (La SW), the Chinese Academy of Meteorological Sciences (CAMS) (Grant No. 2015LASW-B05)the Beijing Natural Sciences Foundation (Grant No. 8142035)
文摘Many observational studies have shown that deformation, like vertical vorticity and divergence, is closely related to the occurrence and distribution of strong precipitation. In this paper, to involve deformation in precipitation diagnosis, a new parameter called potential deformation(PD) is derived and then applied to precipitation detection within a simulated mesoscale convective system(MCS). It is shown that PD includes both stretching deformation and shearing deformation and shares similar characteristics with deformation insofar as it does not change with the rotating coordinate. Diagnosis of the simulated MCS reveals that PD performs well in tracing the MCS' precipitation. In terms of their distributional pattern, the large-value areas of PD are similar to the precipitation in the different development stages of the MCS. A detailed analysis of the physical processes contained within the PD shows that it can reflect the three-dimensional moisture variation,vertical wind shear and wind deformation within the MCS. These structures are usually a comprehensive reflection of the characteristics of the surface cold pool, rear inflow jet, downward cold air flow and upward warm moist flow within the precipitating convective cells. For this reason, the PD shows much stronger anomalies in the precipitating atmosphere than the non-precipitating atmosphere, which implies considerable potential for its application in detecting heavy precipitation within MCSs.
基金supported by the National Natural Science Foundation of China under Grant Nos. 11178006 and 11203086
文摘For most hierarchical triple stars, the classical double two-body model of zeroth-order cannot describe the motions of the components under the current observational accuracy. In this paper, Marchal's first-order analytical solution is implemented and a more efficient simplified version is applied to real triple stars. The results show that, for most triple stars, the proposed first-order model is preferable to the zerothorder model both in fitting observational data and in predicting component positions.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.41974212,41531072,41674166 and 41774194)the Hunan Provincial Natural Science Foundation of China(Grant No.2018JJ2425)。
文摘Previous studies have shown that EMIC waves occur preferentially in the afternoon sector of the magnetosphere.Here we report obliquely propagating H^(+)and He^(+)band EMIC waves detected by Van Allen Probe B in the region of MLT=22.7–23.5 during the June 20,2013 substorm.Using the correlated energetic proton data,we present continuous calculations on EMIC wave growth rates along the inward orbit in the region L=5.5–4.2.The modeled growth rate shows remarkable agreement with the observed double band EMIC waves in both temporal and spatial evolutions.The current results demonstrate that H^(+)and He^(+)band EMIC waves can be simultaneously excited in the midnight sector under appropriate conditions.