This paper presents a coordinating and stabilizing control law for a group of underwater vehicles with unstable dynamics. The coordinating law is derived from a potential that only depends on the relative configuratio...This paper presents a coordinating and stabilizing control law for a group of underwater vehicles with unstable dynamics. The coordinating law is derived from a potential that only depends on the relative configuration of the underwater vehicles. Being coordinated,the group behaves like one mechanical system with symmetry,and we focus on stabilizing a family of coordinated motions,called relative equilibria. The stabilizing law is derived using energy shaping to stabilize the relative equilibria which involve each vehicle translating along its longest(unstable) axis without spinning,while maintaining a relative configuration within the group. The proposed control law is physically motivated and avoids the linearization or cancellation of nonlinearities.展开更多
In this paper,we report the deductive formula used for the method of dual-wavelength corresponding solutions under condition of having ligand interference and the stability constants of three new coordination compound...In this paper,we report the deductive formula used for the method of dual-wavelength corresponding solutions under condition of having ligand interference and the stability constants of three new coordination compounds [AuL_2]^+determined with this method.The stability of the three compounds,the necessity of controlling pH in experimental systems and the advantage of this method are discussed in detail.展开更多
Two novel coordination polymers with molecular structures(2MI)+[Zn(2MI)Cl3]-(1) and(2MI)+NO3-(2) based on ligand 2-methylimidazole(2MI) were synthesized under solution method. Compound 1 crystallizes in ...Two novel coordination polymers with molecular structures(2MI)+[Zn(2MI)Cl3]-(1) and(2MI)+NO3-(2) based on ligand 2-methylimidazole(2MI) were synthesized under solution method. Compound 1 crystallizes in the monoclinic system, space group Cc with a=7.489(2), b=13.448(4), c=13.983(4) , β=98.402(2)°, Z=4 and V=102.246(2) 3. Compound 2 crystallizes in the orthorhombic system, space group pnma with a=14.296(3), b=6.3180(12), c=7.3862(13) , β=90°, Z=4 and V=667.1(2) 3. Dielectric measurements show compounds 1 and 2 have reversible dielectric anomalous behaviors with variation frequencies at different temperature.展开更多
This paper investigates the stability analysis and H_∞ control for a class of nonlinear timedelay systems,and proposes a number of new results.Firstly,an equivalent form is given for this class of systems by means of...This paper investigates the stability analysis and H_∞ control for a class of nonlinear timedelay systems,and proposes a number of new results.Firstly,an equivalent form is given for this class of systems by means of coordinate transformation and orthogonal decomposition of vector fields.Then,based on the equivalent form,some delay-dependent results are derived for the stability analysis of the systems by constructing a novel Lyapunov functional.Thirdly,the authors use the equivalent form and the obtained stability results to investigate the H_∞ control problem for a class of nonhnear time-delay control systems,and present a control design procedure.Finally,an illustrative example is given to show the effectiveness of the results obtained in this paper.It is shown that the main results of this paper are easier to check than some existing ones,and have less conservatism.展开更多
This paper presents control strategies for finite-time stabilization of a class of nonholonomic dynamic systems with unknown virtual control coefficients and system parameters. The minimal dilation degree technique an...This paper presents control strategies for finite-time stabilization of a class of nonholonomic dynamic systems with unknown virtual control coefficients and system parameters. The minimal dilation degree technique and the terminal sliding mode control scheme with finite-time convergence are used to design the controllers. The systematic control strategy development involves the introduction of state transformations and the application of recursive terminal sliding mode structure. Depending on whether the system in question can be converted into a time-invariant linear system or not, two control schemes are proposed respectively guaranteeing that system states converge to zero in finite time. The effectiveness and the robust feature of the developed control approaches are testified by two practical examples: the simplified underactuated hovercraft system and the parking problem for a mobile robot of the unicycle type.展开更多
基金supported by the National Natural Science Foundation of China (11072002, 10832006)
文摘This paper presents a coordinating and stabilizing control law for a group of underwater vehicles with unstable dynamics. The coordinating law is derived from a potential that only depends on the relative configuration of the underwater vehicles. Being coordinated,the group behaves like one mechanical system with symmetry,and we focus on stabilizing a family of coordinated motions,called relative equilibria. The stabilizing law is derived using energy shaping to stabilize the relative equilibria which involve each vehicle translating along its longest(unstable) axis without spinning,while maintaining a relative configuration within the group. The proposed control law is physically motivated and avoids the linearization or cancellation of nonlinearities.
文摘In this paper,we report the deductive formula used for the method of dual-wavelength corresponding solutions under condition of having ligand interference and the stability constants of three new coordination compounds [AuL_2]^+determined with this method.The stability of the three compounds,the necessity of controlling pH in experimental systems and the advantage of this method are discussed in detail.
基金Supported by the National Natural Science Foundation of China(No.21201087 and 21671084)NSF of Jiangsu Province(BK20131244 and BK20130460)+1 种基金the Foundation of Jiangsu Educational Committee(16KJB430011)the Qing Lan Project of Jiangsu Province and Jiangsu Overseas Research&Training Program for University Prominent Young&Middle-aged Teacher and Presidents,Six talent peaks project in Jiangsu Province(2014-XCL-008)
文摘Two novel coordination polymers with molecular structures(2MI)+[Zn(2MI)Cl3]-(1) and(2MI)+NO3-(2) based on ligand 2-methylimidazole(2MI) were synthesized under solution method. Compound 1 crystallizes in the monoclinic system, space group Cc with a=7.489(2), b=13.448(4), c=13.983(4) , β=98.402(2)°, Z=4 and V=102.246(2) 3. Compound 2 crystallizes in the orthorhombic system, space group pnma with a=14.296(3), b=6.3180(12), c=7.3862(13) , β=90°, Z=4 and V=667.1(2) 3. Dielectric measurements show compounds 1 and 2 have reversible dielectric anomalous behaviors with variation frequencies at different temperature.
基金supported by the National Natural Science Foundation of China under Grant Nos.G60774009,61074068,61034007,61374065,and 61304033the Research Fund for the Doctoral Program of Chinese Higher Education under Grant No.200804220028+1 种基金the Natural Science Foundation of Shandong Province under Grant Nos.ZR2013ZEM006,ZR2011EL021,BS2011ZZ012,2013ZRB01873Colleges and Universities in Shandong Province Science and Technology Project under Grant Nos.J13LN37 and J12LN29
文摘This paper investigates the stability analysis and H_∞ control for a class of nonlinear timedelay systems,and proposes a number of new results.Firstly,an equivalent form is given for this class of systems by means of coordinate transformation and orthogonal decomposition of vector fields.Then,based on the equivalent form,some delay-dependent results are derived for the stability analysis of the systems by constructing a novel Lyapunov functional.Thirdly,the authors use the equivalent form and the obtained stability results to investigate the H_∞ control problem for a class of nonhnear time-delay control systems,and present a control design procedure.Finally,an illustrative example is given to show the effectiveness of the results obtained in this paper.It is shown that the main results of this paper are easier to check than some existing ones,and have less conservatism.
基金supported by National Natural Science Foundation of China(No.61273091)Project of Taishan Scholar of Shandong Province of China,and the Ph.D.Programs Foundation of Ministry of Education of China
文摘This paper presents control strategies for finite-time stabilization of a class of nonholonomic dynamic systems with unknown virtual control coefficients and system parameters. The minimal dilation degree technique and the terminal sliding mode control scheme with finite-time convergence are used to design the controllers. The systematic control strategy development involves the introduction of state transformations and the application of recursive terminal sliding mode structure. Depending on whether the system in question can be converted into a time-invariant linear system or not, two control schemes are proposed respectively guaranteeing that system states converge to zero in finite time. The effectiveness and the robust feature of the developed control approaches are testified by two practical examples: the simplified underactuated hovercraft system and the parking problem for a mobile robot of the unicycle type.