The organization of coordinated attack and the selection of aiming point which affect hit probability were analyzed for the countermeasures taken by the hostile submarines at two helicopters' coordinated attack.A ...The organization of coordinated attack and the selection of aiming point which affect hit probability were analyzed for the countermeasures taken by the hostile submarines at two helicopters' coordinated attack.A computational model of coordinated attack parameters,a model of submarine maneuver,and a model of noise jammer were established.Compared to single helicopter' torpedo attack,the coordinated attack of two helicopters can effectively increase the hit probability of torpedo and achieve the higher target detecting probability under counterwork condition.展开更多
This paper proposes a tri-level defense planning model to defend a power system against a coor-dinated cyber-physical attack(CCPA).The defense plan considers not only the standalone physical attack or the cyber attack...This paper proposes a tri-level defense planning model to defend a power system against a coor-dinated cyber-physical attack(CCPA).The defense plan considers not only the standalone physical attack or the cyber attack,but also coordinated attacks.The defense strategy adopts coordinated generation and transmission expansion planning to defend against the attacks.In the process of modeling,the upper-level plan represents the perspective of the planner,aiming to minimize the critical load shedding of the planning system after the attack.The load resources available to planners are extended to flex-ible loads and critical loads.The middle-level plan is from the viewpoint of the attacker,and aims at generating an optimal CCPA scheme in the light of the planning strategy determined by the upper-level plan to maximize the load shedding caused by the attack.The optimal operational behavior of the operator is described by the lower-level plan,which minimizes the load shedding by defending against the CCPA.The tri-level model is analyzed by the column and constraint generation algorithm,which de-composes the defense model into a master problem and subproblem.Case studies on a modified IEEE RTS-79 system are performed to demonstrate the economic effi-ciency of the proposed model.Index Terms—Coordinated cyber-physical attack,flexible load,column-and-constraint generation,defense planning,robust optimization.展开更多
This paper proposes a solution for the problem of cooperative salvo attack of multiple cruise missiles against targets in a group. Synchronization of the arrival time of missiles to hit their common target, minimizing...This paper proposes a solution for the problem of cooperative salvo attack of multiple cruise missiles against targets in a group. Synchronization of the arrival time of missiles to hit their common target, minimizing the time consumption of attack and maximizing the expected damage to group targets are taken into consideration simultaneously. These operational objectives result in a hierarchical mixed-variable optimization problem which includes two types of subproblems, namely the multi-objective missile-target assignment(MOMTA) problem at the upper level and the time-optimal coordinated path planning(TOCPP) problems at the lower level. In order to solve the challenging problem, a recently proposed coordinated path planning method is employed to solve the TOCPP problems to achieve the soonest salvo attack against each target. With the aim of finding a more competent solver for MOMTA, three state-of-the-art multi-objective optimization methods(MOMs),namely NSGA-II, MOEA/D and DMOEA-εC, are adopted. Finally, a typical example is used to demonstrate the advantage of the proposed method. A simple rule-based method is also employed for comparison. Comparative results show that DMOEA-εC is the best choice among the three MOMs for solving the MOMTA problem. The combination of DMOEA-εC for MOMTA and the coordinated path planning method for TOCPP can generate obviously better salvo attack schemes than the rule-based method.展开更多
文摘The organization of coordinated attack and the selection of aiming point which affect hit probability were analyzed for the countermeasures taken by the hostile submarines at two helicopters' coordinated attack.A computational model of coordinated attack parameters,a model of submarine maneuver,and a model of noise jammer were established.Compared to single helicopter' torpedo attack,the coordinated attack of two helicopters can effectively increase the hit probability of torpedo and achieve the higher target detecting probability under counterwork condition.
基金supported by the National Natural Science Foundation of China(No.52022016).
文摘This paper proposes a tri-level defense planning model to defend a power system against a coor-dinated cyber-physical attack(CCPA).The defense plan considers not only the standalone physical attack or the cyber attack,but also coordinated attacks.The defense strategy adopts coordinated generation and transmission expansion planning to defend against the attacks.In the process of modeling,the upper-level plan represents the perspective of the planner,aiming to minimize the critical load shedding of the planning system after the attack.The load resources available to planners are extended to flex-ible loads and critical loads.The middle-level plan is from the viewpoint of the attacker,and aims at generating an optimal CCPA scheme in the light of the planning strategy determined by the upper-level plan to maximize the load shedding caused by the attack.The optimal operational behavior of the operator is described by the lower-level plan,which minimizes the load shedding by defending against the CCPA.The tri-level model is analyzed by the column and constraint generation algorithm,which de-composes the defense model into a master problem and subproblem.Case studies on a modified IEEE RTS-79 system are performed to demonstrate the economic effi-ciency of the proposed model.Index Terms—Coordinated cyber-physical attack,flexible load,column-and-constraint generation,defense planning,robust optimization.
基金supported by the National Natural Science Foundation of China under Grant No.61673058the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization under Grant No.U1609214
文摘This paper proposes a solution for the problem of cooperative salvo attack of multiple cruise missiles against targets in a group. Synchronization of the arrival time of missiles to hit their common target, minimizing the time consumption of attack and maximizing the expected damage to group targets are taken into consideration simultaneously. These operational objectives result in a hierarchical mixed-variable optimization problem which includes two types of subproblems, namely the multi-objective missile-target assignment(MOMTA) problem at the upper level and the time-optimal coordinated path planning(TOCPP) problems at the lower level. In order to solve the challenging problem, a recently proposed coordinated path planning method is employed to solve the TOCPP problems to achieve the soonest salvo attack against each target. With the aim of finding a more competent solver for MOMTA, three state-of-the-art multi-objective optimization methods(MOMs),namely NSGA-II, MOEA/D and DMOEA-εC, are adopted. Finally, a typical example is used to demonstrate the advantage of the proposed method. A simple rule-based method is also employed for comparison. Comparative results show that DMOEA-εC is the best choice among the three MOMs for solving the MOMTA problem. The combination of DMOEA-εC for MOMTA and the coordinated path planning method for TOCPP can generate obviously better salvo attack schemes than the rule-based method.