The CO_2 quenching method has been used for the first time to determine the active complex concen- tration in Nd(naph)_3-Al(i-Bu)_3 catalyst system for polymerization of phenylacetylene into polyphenylacetylene(PPA)fi...The CO_2 quenching method has been used for the first time to determine the active complex concen- tration in Nd(naph)_3-Al(i-Bu)_3 catalyst system for polymerization of phenylacetylene into polyphenylacetylene(PPA)films.The kinetics and mechanism of this polymerization have been investigated by CO_2 quenching and IR,UV analytical methods.The kinetic equation can be expressed as Rp=k[M][Cp],and the apparent activation energy is about 13.6 kJ/mol.There is self-termination of chain propagating.Models for formation of the active complex and polymerization mechanism are proposed.展开更多
Two coordination polymers called [Ni(L)2]n(1) and [Ni(2,2?-bpy)22(H2O)]n (2)(HL = 4-benzoimidazol-1-yl-methyl benzoic acid, 2,2?-bpy = 2,2'-dipyridine) were synthesized by solvothermal reaction simultan...Two coordination polymers called [Ni(L)2]n(1) and [Ni(2,2?-bpy)22(H2O)]n (2)(HL = 4-benzoimidazol-1-yl-methyl benzoic acid, 2,2?-bpy = 2,2'-dipyridine) were synthesized by solvothermal reaction simultaneously and characterized by elemental analyses, thermogravimetric analysis, X-ray powder diffraction, IR spectroscopy and single-crystal X-ray diffraction analysis. Complex 1 crystallizes in monoclinic system, space group P21/c with a = 14.673(3), b = 10.773(2), c = 16.566(3) ?, V = 2559.2(8) A^3, Z = 4 and F(000) = 1160. 2 also crystallizes in monoclinic system, space group C2/c with a = 15.404(3), b = 12.652(3), c = 6.5362(13) ?, V = 1246.2(5) A^3, Z = 4 and F(000) = 712. The bridging L ligand connects the Ni^Ⅱ cations into a 2D network in complex 1, while 2 shows a 1D structure formed through the two O atoms of SO4^(2-) ions connecting the molecule. The catalytic properties indicate that complex 1 shows good catalytic activities for the cyanosilylation of 4-chlorobenzaldehyde. In addition, fluorescence property of complex 1 which quenches the excitation intensity in solid state was investigated at room temperature.展开更多
Chlorite(ClO_(2)-)is the by-product of the water treatment process carried out using chlorine dioxide(ClO_(2))as an effective disinfectant and oxidant;however,the reactivation of ClO_(2)has commonly been overlooked.H...Chlorite(ClO_(2)-)is the by-product of the water treatment process carried out using chlorine dioxide(ClO_(2))as an effective disinfectant and oxidant;however,the reactivation of ClO_(2)has commonly been overlooked.Herein,it was unprecedentedly found that ClO_(2)could be activated by iron species(Feb:Fe0,FeII,or FeIII),which contributed to the synchronous removal of ClO_(2)and selective oxidative treatment of organic contaminants.However,the above-mentioned activation process presented intensive Ht-dependent reactivity.The introduction of Feb significantly shortened the autocatalysis process via the accumulation of Clor ClOduring the protonation of ClO_(2)driven by ultrasonic field.Furthermore,it was found that the interdependent high-valent-Fe-oxo and ClO_(2),after identification,were the dominant active species for accelerating the oxidation process.Accordingly,the unified mechanisms based on coordination catalysis([FeN(H_(2)O)a(ClOxm)b]nt-P)were putative,and this process was thus used to account for the pollutant removal by the Feb-activated protonated ClO_(2).This study pioneers the activation of ClO_(2)for water treatment and provides a novel strategy for“waste treating waste”.Derivatively,this activation process further provides the preparation methods for sulfones and ClO_(2),including the oriented oxidation of sulfoxides to sulfones and the production of ClO_(2) for on-site use.展开更多
文摘The CO_2 quenching method has been used for the first time to determine the active complex concen- tration in Nd(naph)_3-Al(i-Bu)_3 catalyst system for polymerization of phenylacetylene into polyphenylacetylene(PPA)films.The kinetics and mechanism of this polymerization have been investigated by CO_2 quenching and IR,UV analytical methods.The kinetic equation can be expressed as Rp=k[M][Cp],and the apparent activation energy is about 13.6 kJ/mol.There is self-termination of chain propagating.Models for formation of the active complex and polymerization mechanism are proposed.
基金supported by the National Natural Science Foundation of China(21171075/B010303,21103073/B030201,21306067/B060903)Innovation&Entrepreneurship Traning Program of China(201410299054Y)
文摘Two coordination polymers called [Ni(L)2]n(1) and [Ni(2,2?-bpy)22(H2O)]n (2)(HL = 4-benzoimidazol-1-yl-methyl benzoic acid, 2,2?-bpy = 2,2'-dipyridine) were synthesized by solvothermal reaction simultaneously and characterized by elemental analyses, thermogravimetric analysis, X-ray powder diffraction, IR spectroscopy and single-crystal X-ray diffraction analysis. Complex 1 crystallizes in monoclinic system, space group P21/c with a = 14.673(3), b = 10.773(2), c = 16.566(3) ?, V = 2559.2(8) A^3, Z = 4 and F(000) = 1160. 2 also crystallizes in monoclinic system, space group C2/c with a = 15.404(3), b = 12.652(3), c = 6.5362(13) ?, V = 1246.2(5) A^3, Z = 4 and F(000) = 712. The bridging L ligand connects the Ni^Ⅱ cations into a 2D network in complex 1, while 2 shows a 1D structure formed through the two O atoms of SO4^(2-) ions connecting the molecule. The catalytic properties indicate that complex 1 shows good catalytic activities for the cyanosilylation of 4-chlorobenzaldehyde. In addition, fluorescence property of complex 1 which quenches the excitation intensity in solid state was investigated at room temperature.
基金supported by the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(2019DX08)National Natural Science Foundation of China(52100036),Natural Science Foundation of Shan-dong Province of China(ZR20210E119)+1 种基金Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(QA202140)Scientific Research Foundation of Harbin Institute of Technology at Weihai(HIT(WH)2019).
文摘Chlorite(ClO_(2)-)is the by-product of the water treatment process carried out using chlorine dioxide(ClO_(2))as an effective disinfectant and oxidant;however,the reactivation of ClO_(2)has commonly been overlooked.Herein,it was unprecedentedly found that ClO_(2)could be activated by iron species(Feb:Fe0,FeII,or FeIII),which contributed to the synchronous removal of ClO_(2)and selective oxidative treatment of organic contaminants.However,the above-mentioned activation process presented intensive Ht-dependent reactivity.The introduction of Feb significantly shortened the autocatalysis process via the accumulation of Clor ClOduring the protonation of ClO_(2)driven by ultrasonic field.Furthermore,it was found that the interdependent high-valent-Fe-oxo and ClO_(2),after identification,were the dominant active species for accelerating the oxidation process.Accordingly,the unified mechanisms based on coordination catalysis([FeN(H_(2)O)a(ClOxm)b]nt-P)were putative,and this process was thus used to account for the pollutant removal by the Feb-activated protonated ClO_(2).This study pioneers the activation of ClO_(2)for water treatment and provides a novel strategy for“waste treating waste”.Derivatively,this activation process further provides the preparation methods for sulfones and ClO_(2),including the oriented oxidation of sulfoxides to sulfones and the production of ClO_(2) for on-site use.