Posture recognition plays an important role in many applications,such as security system and monitoring system.Joint quaternion combined with support vector machine(SVM) can solve the problem of moving human posture r...Posture recognition plays an important role in many applications,such as security system and monitoring system.Joint quaternion combined with support vector machine(SVM) can solve the problem of moving human posture recognition.It is a simple and effective algorithm that only three joints are used as the feature points in the whole human skeleton.Using the quaternion of the three joints,a feature vector with five parameters in gait cycle is extracted.The efficiency of the proposed method is demonstrated through an experimental study,and walking and running postures can be distinguished accurately.展开更多
Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new meth...Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new method based on virtual model and invariant moments was proposed to generate training samples.The method was composed of the following steps:use computer and simulation software to build target object's virtual model and then simulate the environment,light condition,camera parameter,etc.;rotate the model by spin and nutation of inclination to get the image sequence by virtual camera;preprocess each image and transfer them into binary image;calculate the invariant moments for each image and get a vectors' sequence.The vectors' sequence which was proved to be complete became the training samples together with the target outputs.The simulated results showed that the proposed method could be used to recognize the real targets and improve the accuracy of target recognition effectively when the sampling interval was short enough and the circumstance simulation was close enough.展开更多
In wireless sensor networks(WSNs) with single sink,the nodes close to the sink consume their energy too fast due to transferring a large number of data packages,resulting in the "energy hole" problem.Deployi...In wireless sensor networks(WSNs) with single sink,the nodes close to the sink consume their energy too fast due to transferring a large number of data packages,resulting in the "energy hole" problem.Deploying multiple sink nodes in WSNs is an effective strategy to solve this problem.A multi-sink deployment strategy based on improved particle swarm clustering optimization(IPSCO) algorithm for WSNs is proposed in this paper.The IPSCO algorithm is a combination of the improved particle swarm optimization(PSO) algorithm and K-means clustering algorithm.According to the sink nodes number K,the IPSCO algorithm divides the sensor nodes in the whole network area into K clusters based on the distance between them,making the total within-class scatter to minimum,and outputs the center of each cluster.Then,multiple sink nodes in the center of each cluster can be deployed,to achieve the effects of partition network reasonably and deploy multi-sink nodes optimally.The simulation results show that the deployment strategy can prolong the network lifetime.展开更多
基金the Key Project of the National Natural Science Foundation of China(No.61134009)National Natural Science Foundations of China(Nos.61473077,61473078,61503075)+6 种基金Cooperative Research Funds of the National Natural Science Funds Overseas and Hong Kong and Macao Scholars,China(No.61428302)Program for Changjiang Scholars from the Ministry of Education,ChinaSpecialized Research Fund for Shanghai Leading Talents,ChinaProject of the Shanghai Committee of Science and Technology,China(No.13JC1407500)Innovation Program of Shanghai Municipal Education Commission,China(No.14ZZ067)Shanghai Pujiang Program,China(No.15PJ1400100)the Fundamental Research Funds for the Central Universities,China(Nos.15D110423,2232015D3-32)
文摘Posture recognition plays an important role in many applications,such as security system and monitoring system.Joint quaternion combined with support vector machine(SVM) can solve the problem of moving human posture recognition.It is a simple and effective algorithm that only three joints are used as the feature points in the whole human skeleton.Using the quaternion of the three joints,a feature vector with five parameters in gait cycle is extracted.The efficiency of the proposed method is demonstrated through an experimental study,and walking and running postures can be distinguished accurately.
基金Supported by the Ministerial Level Research Foundation(404040401)
文摘Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new method based on virtual model and invariant moments was proposed to generate training samples.The method was composed of the following steps:use computer and simulation software to build target object's virtual model and then simulate the environment,light condition,camera parameter,etc.;rotate the model by spin and nutation of inclination to get the image sequence by virtual camera;preprocess each image and transfer them into binary image;calculate the invariant moments for each image and get a vectors' sequence.The vectors' sequence which was proved to be complete became the training samples together with the target outputs.The simulated results showed that the proposed method could be used to recognize the real targets and improve the accuracy of target recognition effectively when the sampling interval was short enough and the circumstance simulation was close enough.
基金the Key Project of the National Natural Science Foundation of China(No.61134009)National Natural Science Foundations of China(Nos.61473077,61473078)+4 种基金Program for Changjiang Scholars from the Ministry of Education,ChinaSpecialized Research Fund for Shanghai Leading Talents,ChinaProject of the Shanghai Committee of Science and Technology,China(No.13JC1407500)Innovation Program of Shanghai Municipal Education Commission,China(No.14ZZ067)the Fundamental Research Funds for the Central Universities,China(No.15D110423)
文摘In wireless sensor networks(WSNs) with single sink,the nodes close to the sink consume their energy too fast due to transferring a large number of data packages,resulting in the "energy hole" problem.Deploying multiple sink nodes in WSNs is an effective strategy to solve this problem.A multi-sink deployment strategy based on improved particle swarm clustering optimization(IPSCO) algorithm for WSNs is proposed in this paper.The IPSCO algorithm is a combination of the improved particle swarm optimization(PSO) algorithm and K-means clustering algorithm.According to the sink nodes number K,the IPSCO algorithm divides the sensor nodes in the whole network area into K clusters based on the distance between them,making the total within-class scatter to minimum,and outputs the center of each cluster.Then,multiple sink nodes in the center of each cluster can be deployed,to achieve the effects of partition network reasonably and deploy multi-sink nodes optimally.The simulation results show that the deployment strategy can prolong the network lifetime.