This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
In order to solve negative phase sequence problem of V connection transformer in the high speed and heavy haul electrical railway of China, the hybrid compensative co-phase traction power supply system which based on ...In order to solve negative phase sequence problem of V connection transformer in the high speed and heavy haul electrical railway of China, the hybrid compensative co-phase traction power supply system which based on passive and active compensation is proposed. Firstly, There construction and capacity distribution are analyzed, and the compensation current of active equipment is gave;Second, the feature of the hybrid compensative schemes are discussed. In the end, the related simulation results have confirmed the effectiveness of the compensation schemes in this paper.展开更多
Telescopes with large aspherical primary mirrors collect more light and are therefore sought after by astronomers. Instead of using a single large one-piece mirror, smaller segments can be assembled into a useable tel...Telescopes with large aspherical primary mirrors collect more light and are therefore sought after by astronomers. Instead of using a single large one-piece mirror, smaller segments can be assembled into a useable telescopic primary. Because the segments must fit together to create the effect of a single mirror, segmented optics present unique challenges to the fabrication and testing that are absent in monolithic optics. A dispersed fringe sensor (DFS) using a broadband point source is an efficient method for cophasing and is also highly automated and robust. Unlike the widely adopted Shack- Hartmann Wavefront sensor and curvature wavefront sensor with edge sensors for calibration of relative pistons, DFS can estimate the piston between segments by only using the spectrum formed by the transmissive grating's dispersion, and therefore can replace the edge sensors, which are difficult to calibrate. We introduce the theory of the DFS and Dispersed Hartmann Sensor (DHS) for further utilization of the coarse phasing method of DFS. According to the theory, we bring out the preliminary system design of the cophasing experimental system based on DFS and DHS which is now established in our institute. Finally, a summary is reached.展开更多
This paper presents a partial compensation scheme for V/v transformer cophase traction power supply in high-speed railway systems.The scheme compensates variable traction load current,and controls the current phase at...This paper presents a partial compensation scheme for V/v transformer cophase traction power supply in high-speed railway systems.The scheme compensates variable traction load current,and controls the current phase at the secondary side of the V/v transformer for power factor correction and negative sequence current reduction.To achieve this,the grid side current phase angles are optimized while satisfying the grid code on the power factor and voltage unbalance limits.The optimized phase angles are then used to design control references under varying load conditions.The compensation control action is updated regularly based on real-time measurements of the traction load,and the required currents are controlled by a 25-level single-phase back-to-back MMC power conditioner to achieve the compensation target.Static and dynamic load compensation performances are verified based on the simulation studies.展开更多
We report the laboratory experiment on a segmented mirror testbed that shows the use of a dispersed Rayleigh interferometer to phase segmented mirrors. Segment alignment of tip-tilt is fulfilled by overlapping diffrac...We report the laboratory experiment on a segmented mirror testbed that shows the use of a dispersed Rayleigh interferometer to phase segmented mirrors. Segment alignment of tip-tilt is fulfilled by overlapping diffraction pattern centroids of the three individual segments on the focal plane. A spherical interferometer is introduced to evaluate the performance of piston, tip-tilt sensing, and control closed-loop, and finally a total residual root-mean-square (RMS) surface error of about 45 nm is achieved, in which a typical error of about 20 nm is contributed by piston. These results demonstrate that the dispersed Rayleigh interferometer can successfully sense the piston of segmented mirrors and be used in phasing segmented telescopes under extensive studies.展开更多
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.
文摘In order to solve negative phase sequence problem of V connection transformer in the high speed and heavy haul electrical railway of China, the hybrid compensative co-phase traction power supply system which based on passive and active compensation is proposed. Firstly, There construction and capacity distribution are analyzed, and the compensation current of active equipment is gave;Second, the feature of the hybrid compensative schemes are discussed. In the end, the related simulation results have confirmed the effectiveness of the compensation schemes in this paper.
基金supported by the National Natural Science Foundation of China(Grant No. 10703008)
文摘Telescopes with large aspherical primary mirrors collect more light and are therefore sought after by astronomers. Instead of using a single large one-piece mirror, smaller segments can be assembled into a useable telescopic primary. Because the segments must fit together to create the effect of a single mirror, segmented optics present unique challenges to the fabrication and testing that are absent in monolithic optics. A dispersed fringe sensor (DFS) using a broadband point source is an efficient method for cophasing and is also highly automated and robust. Unlike the widely adopted Shack- Hartmann Wavefront sensor and curvature wavefront sensor with edge sensors for calibration of relative pistons, DFS can estimate the piston between segments by only using the spectrum formed by the transmissive grating's dispersion, and therefore can replace the edge sensors, which are difficult to calibrate. We introduce the theory of the DFS and Dispersed Hartmann Sensor (DHS) for further utilization of the coarse phasing method of DFS. According to the theory, we bring out the preliminary system design of the cophasing experimental system based on DFS and DHS which is now established in our institute. Finally, a summary is reached.
文摘This paper presents a partial compensation scheme for V/v transformer cophase traction power supply in high-speed railway systems.The scheme compensates variable traction load current,and controls the current phase at the secondary side of the V/v transformer for power factor correction and negative sequence current reduction.To achieve this,the grid side current phase angles are optimized while satisfying the grid code on the power factor and voltage unbalance limits.The optimized phase angles are then used to design control references under varying load conditions.The compensation control action is updated regularly based on real-time measurements of the traction load,and the required currents are controlled by a 25-level single-phase back-to-back MMC power conditioner to achieve the compensation target.Static and dynamic load compensation performances are verified based on the simulation studies.
文摘We report the laboratory experiment on a segmented mirror testbed that shows the use of a dispersed Rayleigh interferometer to phase segmented mirrors. Segment alignment of tip-tilt is fulfilled by overlapping diffraction pattern centroids of the three individual segments on the focal plane. A spherical interferometer is introduced to evaluate the performance of piston, tip-tilt sensing, and control closed-loop, and finally a total residual root-mean-square (RMS) surface error of about 45 nm is achieved, in which a typical error of about 20 nm is contributed by piston. These results demonstrate that the dispersed Rayleigh interferometer can successfully sense the piston of segmented mirrors and be used in phasing segmented telescopes under extensive studies.