期刊文献+
共找到359篇文章
< 1 2 18 >
每页显示 20 50 100
Fabrication and thermal conductivity of copper matrix composites reinforced by tungsten-coated carbon nanotubes 被引量:6
1
作者 Jun-hui Nie Cheng-chang Jia +3 位作者 XianJia Yi Li Ya-feng Zhang Xue-bing Liang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第5期446-452,共7页
Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were... Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vo1%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (〈5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vo1%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Gamett effective medium approximation, and its calculated value was about 3.0× 10-9 m2.K.W-l. 展开更多
关键词 metallic matrix composites (MMCs) carbon nanotubes TUNGSTEN copper spark plasma sintering thermal conductivity
下载PDF
Microstructure and properties of copper matrix composites reinforced by nano-SiC and nano-Al_2O_3 particles 被引量:1
2
作者 汪峰涛 吴玉程 +2 位作者 任榕 王涂根 王文芳 《中国有色金属学会会刊:英文版》 CSCD 2005年第S3期136-139,共4页
Copper/silicon carbide composites (Cu/SiC) and copper/alumina composites (Cu/Al2O3) were fabricated by the powder metallurgy method. The influence of reinforcement particles contents on the relevant properties of ... Copper/silicon carbide composites (Cu/SiC) and copper/alumina composites (Cu/Al2O3) were fabricated by the powder metallurgy method. The influence of reinforcement particles contents on the relevant properties of the composites and the microstructure of Cu/SiC and Cu/Al2O3 composites were studied. The reinforcement effects of nano-SiC and nano-Al2O3 particles were compared. The experimental results show that with the increase of the amount of nano-SiC and nano-Al2O3 particles, the density of the both composites decreases, the resistivity increases, whereas the hardness increases firstly and then drops. The softening temperatures of the composites are above 700℃ which is far higher than that of the pure copper, leading to the improvement of the thermal stability of the composites at high temperatures. Considering all factors, the reinforcement effects of nano-SiC are better than those of nano-Al2O3 when their contents are the same in the copper matrix. 展开更多
关键词 thermal stability density copper matrix composite RESISTIVITY HARDNESS SOFTENING temperature
下载PDF
Synergistic regulation of current-carrying wear performance of resin matrix carbon brush composites with tungsten copper composite powder 被引量:1
3
作者 TU Chuan-jun GONG Pei +4 位作者 REN Gai-mei CHEN Gang CHEN Jian HONG Li-rui LIU Ping 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第10期2973-2987,共15页
Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flak... Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear. 展开更多
关键词 resin matrix carbon brush composite tungsten copper composite powder current-carrying wear particle reinforcement
下载PDF
Thermo-physical Properties of Continuous Carbon Fiber Reinforced Copper Matrix Composites
4
作者 曹金华 黄俊波 陈先有 《材料工程》 EI CAS CSCD 北大核心 2007年第z1期61-65,共5页
Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE... Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE) and thermal conductivity.Thermo-physical properties have been measured in both,longitudinal and transversal directions to the fiber orientation.The results showed that Cf/Cu composites may be a suitable candidate for heat sinks because of its good thermo-physical properties e.g.the low CTE(4.18×10-6/K) in longitudinal orientation and(14.98×10-6/K) in transversal orientation at the range of 20-50℃,a good thermal conductivity(87.2 W/m·K) in longitudinal orientation and(58.2 W/m·K) in transversal orientation.Measured CTE and thermal conductivity values are compared with those predicted by several well-known models.Eshelby model gave better results for prediction of the CTE and thermal conductivity of the unidirectional composites. 展开更多
关键词 carbon FIBER copper matrix composites THERMAL EXPANSION THERMAL CONDUCTIVITY
下载PDF
Ceramic particles reinforced copper matrix composites manufactured by advanced powder metallurgy:preparation, performance, and mechanisms 被引量:6
5
作者 Yi-Fan Yan Shu-Qing Kou +4 位作者 Hong-Yu Yang Shi-Li Shu Feng Qiu Qi-Chuan Jiang Lai-Chang Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期200-234,共35页
Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and e... Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields. 展开更多
关键词 copper matrix composites advanced powder metallurgy model prediction particle characteristics strengthening mechanism
下载PDF
Significant strengthening of copper-based composites using boron nitride nanotubes 被引量:2
6
作者 Naiqi Chen Quan Li +4 位作者 Youcao Ma Kunming Yang Jian Song Yue Liu Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1764-1778,共15页
Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, w... Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol%BNNTs/Cu and 3vol%CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K,both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of~404 MPa, which is approximately 170%higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27%and 29%higher than those of CNTs/Cu, respectively.This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature. 展开更多
关键词 boron nitride nanotubes copper matrix composites excellent mechanical property strengthening mechanism
下载PDF
Sintering behavior and thermal conductivity of nickel-coated graphite flake/copper composites fabricated by spark plasma sintering 被引量:1
7
作者 Hui Xu Jian-hao Chen +2 位作者 Shu-bin Ren Xin-bo He Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第4期459-471,共13页
Nickel-coated graphite flakes/copper(GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes(GFs) being modified by Ni–P electroless plating. The effects of the phase trans... Nickel-coated graphite flakes/copper(GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes(GFs) being modified by Ni–P electroless plating. The effects of the phase transition of the amorphous Ni–P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity(TC) of the GN/Cu composites were systematically investigated. The introduction of Ni–P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650℃ and slightly increased the TC of the X–Y basal plane of the GF/Cu composites with 20 vol%–30 vol% graphite flakes. However, when the graphite flake content was greater than 30 vol%, the TC of the GF/Cu composites decreased with the introduction of Ni–P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites. 展开更多
关键词 copper matrix composites graphite flake nickel-phosphorus transition layer sintering behavior thermal conductivity
下载PDF
Synthesis and Tribological Properties of Copper-alumina Nanocomposites Prepared by Coprecipitation Technique
8
作者 符学龙 HU Yubing 陶杰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期1123-1130,共8页
The objective of this work is to study the synthesis of copper-alumina nanocomposites using the coprecipitation process and hot-pressing method, and investigate their mechanical properties. The effects of calcination ... The objective of this work is to study the synthesis of copper-alumina nanocomposites using the coprecipitation process and hot-pressing method, and investigate their mechanical properties. The effects of calcination temperature on the average size of composite particles and chemical composition after calcination were also analyzed. The sintering parameters including sintering temperature, hot pressure and packing time were optimized to fabricate the alumina nanoparticles reinforced copper matrix composites(CMCs). The density, microhardness and tribological properties of the CMCs reinforced with 1 wt%, 2 wt%, 3 wt%, 4 wt% and 5 wt% of alumina nanoparticles were investigated correspondingly. The results showed that the optimum preparation parameters for the CMCs were 900 ℃ of hot pressing temperature, 27.5 MPa of hot pressure and 2 hrs of packing time. The CMC reinforced with 2 wt% of alumina nanoparticles had the lowest wear rate, with the relative wear resistance of 3.13. 展开更多
关键词 copper matrix composites alumina nanoparticles wear rate coprecipitation method
下载PDF
Fabrication of superaligned carbon nanotubes reinforced copper matrix laminar composite by electrodeposition 被引量:4
9
作者 靳宇 朱琳 +1 位作者 薛卫东 李文珍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期2994-3001,共8页
A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and th... A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and then a layer of copper was electrodeposited on it.By repeating the above process,the laminar Cu/SACNT composite which contains dozens or hundreds of layers of copper and SACNT films was obtained.The thickness of a single copper layer was controlled by adjusting the process parameter easily and the thinnest layer is less than 2 μm.The microscopic observation shows that the directional alignment structure of SACNT is retained in the composite perfectly.The mechanical and electrical properties testing results show that the tensile and yield strengths of composites are improved obviously compared with those of pure copper,and the high conductivity is retained.This technology is a potential method to make applicable MMC which characterizes high volume fraction and directional alignment of carbon nanotubes. 展开更多
关键词 copper matrix laminar composite superaligned carbon nanotubes ELECTRODEPOSITION
下载PDF
Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique 被引量:10
10
作者 Hui Chen Cheng-chang Jia +2 位作者 Shang-jie Li Xian Jia Xia Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第4期364-371,共8页
Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding ... Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding strength and thermo-physical properties of the composites were achieved using an atomized copper alloy with minor additions of Co, Cr, 13, and Ti. The thermal conductivity (TC) oh- mined exhibited as high as 688 W.m-1.K-1, but also as low as 325 W.m-1.K-l. A large variation in TC can be rationalized by the discrepancy of diamond-matrix interfacial bonding. It was found from fractography that preferential bonding between diamond and the Cu-alloy matrix occurred only on the diamond {100} faces. EDS analysis and Raman spectra suggested that selective interfacial bonding may be attributed to amorphous carbon increasing the wettability between diamond and the Cu-alloy matrix. Amorphous carbon was found to significantly affect the TC of the composite by interface modification. 展开更多
关键词 metallic matrix composites diamonds copper alloys interfacial bonding thermal conductivity
下载PDF
Influence of nano-Al_2O_3-reinforced oxide-dispersion-strengthened Cu on the mechanical and tribological properties of Cu-based composites 被引量:4
11
作者 Xiang Zhao Lei-chen Guo +7 位作者 Long Zhang Ting-ting Jia Cun-guang Chen Jun-jie Hao Hui-ping Shao Zhi-meng Guo Ji Luo Jun-bin Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第12期1444-1451,共8页
The mechanical and tribological properties of Cu-based powder metallurgy (P/M) friction composites containing 10wt%-50wt% oxide-dispersion-strengthened (ODS) Cu reinforced with nano-Al2O3 were investigated. Additi... The mechanical and tribological properties of Cu-based powder metallurgy (P/M) friction composites containing 10wt%-50wt% oxide-dispersion-strengthened (ODS) Cu reinforced with nano-Al2O3 were investigated. Additionally, the friction and wear behaviors as well as the wear mechanism of the Cu-based composites were characterized by scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS) elemental mapping. The results indicated that the Cu-based friction composite containing 30wt% ODS Cu exhibited the highest hardness and shear strength. The average and instantaneous friction coefficient curves of this sample, when operated in a high-speed train at a speed of 300 km/h, were similar to those of a commercial disc brake pad produced by Knorr-Bremse AG (Germany). Additionally, the lowest linear wear loss of the obtained samples was (0.008 ± 0.001) mm per time per face, which is much lower than that of the Knorr-Bremse pad ((0.01 ± 0.001) mm). The excellent performance of the developed pad is a consequence of the formation of a dense oxide composite layer and its close combination with the pad body. 展开更多
关键词 metal matrix composites oxide dispersion strengthening copper NANOPARTICLES microstructure mechanical properties tribological properties
下载PDF
Thermal conductivity of diamond/copper composites with a bimodal distribution of diamond particle sizes prepared by pressure infiltration method 被引量:3
12
作者 CHEN Chao GUO Hong CHU Ke YIN Fazhang ZHANG Ximing HAN Yuanyuan FAN Yeming 《Rare Metals》 SCIE EI CAS CSCD 2011年第4期408-413,共6页
The thermal conductivity of diamond/copper composites with bimodal particle sizes was studied. The composites were prepared through pressure infiltration of liquid copper into diamond preforms with a mixture of 40 and... The thermal conductivity of diamond/copper composites with bimodal particle sizes was studied. The composites were prepared through pressure infiltration of liquid copper into diamond preforms with a mixture of 40 and 100 pm-size diamonds. The permeability of the preforms with different coarse-to-fine volume ratios of diamonds was investigated. The thermal conductivity of the diamond/copper composites with bimodal size distribution was compared to the theoretical value derived from an analytical model developed by Chu. It is predicted that the diamond/copper composites could reach a higher thermal conductivity and their surface roughness could be improved by applying bimodal diamond particle sizes. 展开更多
关键词 metallic matrix composites thermal conductivity diamonds copper size distribution pressure infiltration
下载PDF
Effect of aluminum borate whisker coating on interface and mechanical properties of 6061Al matrix composites 被引量:2
13
作者 GAO Haiqi,WANG Lidong and FEI Weidong School of Materials Science & Engineering,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期41-45,共5页
Copper coating was deposited on the surface of aluminum borate whisker by an electroless plating method.This method was used to modify the interfacial property of squeeze-casting aluminum borate whisker reinforced 606... Copper coating was deposited on the surface of aluminum borate whisker by an electroless plating method.This method was used to modify the interfacial property of squeeze-casting aluminum borate whisker reinforced 6061Al matrix composite.Interface observation indicates that the spinel reaction(MgAl2O4) is hindered by the copper coating,and the difference in interfacial reaction degree affects the tensile property and aging behavior of the composite.For the composite with less spinel reaction(MgAl2O4),its peak-aging process are postponed due to less depletion of magnesium.On the fracture surface of copper-coated composite dimples and fractures of whiskers are more,but on the fracture surface of uncoated composite pull-out of whiskers are more than that on the coated one.In uncoated composite the fracture generally originates from the near-interface-region. 展开更多
关键词 aluminum borate whisker aluminum matrix composite copper coating interfacial reaction mechanical property
下载PDF
Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering 被引量:4
14
作者 Wei Cui Hui Xu +3 位作者 Jian-hao Chen Shu-bin Ren Xin-bo He Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第6期716-722,共7页
Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering temperature, sintering duration, and Cu powder particle size on the relative density and thermal co... Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering temperature, sintering duration, and Cu powder particle size on the relative density and thermal conductivity of the composites were investigated in this paper. The influence of these parameters on the properties and microstructures of the composites was also discussed. The results show that the relative density of Cr-coated diamond/Cu reaches ~100% when the composite is gradually compressed to 30 MPa during the heating process. The densification temperature increases from 880 to 915℃ when the diamond content is increased from 45vol% to 60vol%. The densification temperature does not increase further when the content reaches 65vol%. Cu powder particles in larger size are beneficial for increasing the relative density of the composite. 展开更多
关键词 metal matrix composites copper diamond relative density spark plasma sintering
下载PDF
Microstructural characterization and dry sliding wear behavior of spark plasma sintered Cu-YSZ composites 被引量:1
15
作者 Jafar MIRAZIMI Parvin ABACHI Kazem PURAZRANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1745-1754,共10页
In the present study, yttria stabilized zirconia (YSZ) reinforced Cu matrix composite specimens were produced by spark plasma sintering (SPS). For comparison, pure Cu specimen was also produced in the same conditi... In the present study, yttria stabilized zirconia (YSZ) reinforced Cu matrix composite specimens were produced by spark plasma sintering (SPS). For comparison, pure Cu specimen was also produced in the same conditions. The effect of particles content on microstructure, relative density, electrical conductivity, and Vickers hardness was evaluated. The pin-on-disk test was also performed to determine dry sliding wear behavior of specimens under different wear conditions. After sliding wear tests, the worn surfaces were examined by field emission scanning electron microscopy (FE-SEM). Microstructural study showed satisfactory distribution of reinforcement particles in copper matrix. The relative density up to 95%was obtained for all specimens. By increasing YSZ content from 0 to 5% (volume fraction), the electrical conductivity of specimens decreased from 99.2%IACS to 65%IACS, correspondingly. The hardness of Cu-5%YSZ composite specimen was two times greater than that of pure copper. The volume loss and wear rate of pure Cu specimen were 1.48 mm^3 and 1.5±10^-3 mm^3/m under 50 N applied load and 1000 m sliding distance. However, for composite containing 5% YSZ particles, these values dropped to 0.97 mm^3 and 0.9±10^-3 mm^3/m, respectively. Moreover, the friction coefficient of specimens was changed from 0.6 to 0.4. The worn surface and debris observation indicate local plastic deformation and delamination as dominant wear mechanisms for pure copper, while oxidation and ploughing for composite specimen. Accordingly, it can be concluded that the Cu-YSZ composite could be a good candidate for the electrical contact applications in relays, contactors, switches and circuit breakers requiring good electrical and thermal conductivity and capability to resist wearing. 展开更多
关键词 copper matrix composite spark plasma sintering microstructure electrical conductivity sliding wear
下载PDF
Microstructure and Mechanical Performance of Cu-SnO_2-rGO based Composites Prepared by Plasma Activated Sintering 被引量:2
16
作者 罗国强 HUANG Jing +4 位作者 JIN Zhipeng LI Meijuan JIANG Xiaojuan SHEN Qiang ZHANG Lianmeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1152-1158,共7页
A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers... A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers into Cu matrix. The repeating Cu-SnO2-rGO structure was composed of inner dispersed reduced graphene oxide(r GO), SnO2 as intermedia and outer Cu coating. SnO2 was introduced to the surface of rGO sheets in order to prevent the graphene aggregation with SnO2 serving as spacer and to provide enough active sites for subsequent Cu deposition. This process can guarantee rGO sheets to suffi ciently disperse and Cu nanoparticles to tightly and uniformly anchor on each layer of rGO by means of the SnO2 active sites as well as strictly control the reduction speed of Cu^2+. The complete cover of Cu nanoparticles on rGO sheets thoroughly avoids direct contact among rGO layers. Hence, the repeating structure can simultaneously solve the wettability problem between rGO and Cu matrix as well as improve the bonding strength between rGO and Cu matrix at the well-bonded Cu-SnO2-rGO interface. The isolated rGO can effectively hinder the glide of dislocation at Cu-rGO interface and support the applied loads. Finally, the compressive strength of CMCs was enhanced when the strengthening effi ciency reached up to 41. 展开更多
关键词 graphene Cu-SnO2-rGO structure copper matrix composites sensitization plasma activated sintering mechanical property
下载PDF
Effect of particle size on thermo-physical properties of SiC_p/Cu composites fabricated by squeeze casting 被引量:2
17
作者 武高辉 陈国钦 +2 位作者 朱德志 张强 姜龙涛 《中国有色金属学会会刊:英文版》 CSCD 2005年第2期217-220,共4页
For the electronic packaging applications, copper matrix composites reinforced with different sized SiC particles (10 μm, 20 μm and 63 μm) were fabricated by squeeze casting technology. And the effect of particle... For the electronic packaging applications, copper matrix composites reinforced with different sized SiC particles (10 μm, 20 μm and 63 μm) were fabricated by squeeze casting technology. And the effect of particle size on their thermo-physical properties was discussed. The composites are free of porosity and the SiC particles are distributed uniformly in the composites. It is found that the mean linear thermal expansion coefficients(20100 ℃) of SiCp/Cu composites are in the range of (8.49.2)×10-6/℃, and smaller expansion coefficient can be obtained for the composites with finer SiC particles because of the larger restriction in expansion through interfaces. Their thermal conductivities are reduced with the decrease of SiC sizes. This is attributed to the fact that the negative effect of interfacial thermal resistance becomes increasingly dominant as the particles becomes smaller. 展开更多
关键词 颗粒直径 铜基复合材料 热膨胀 导热性
下载PDF
Distribution and engulfment behavior of TiB_2 particles or clusters in wedge-shaped copper casting ingot 被引量:1
18
作者 孙靖 张晓波 +3 位作者 蔡庆 张亦杰 马乃恒 王浩伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期54-60,共7页
Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The... Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The experimental results show that the particle size distribution obeys two separate systems in the whole wedge-cast sample. Furthermore, it is found that the big clusters are pushed to the center of the wedge shaped sample and the single particle or small clusters consisting of few particles are engulfed into the α-Al in the area of the sample edge. The cluster degree of particles varies in different areas, and its value is 0.2 and 0.6 for the cluster fraction in the edge and in the center of the wedge sample, respectively. The cluster diameter does not obey the normal distribution but approximately obeys lognormal distribution in the present work. More importantly, in the whole sample, the particle size obeys two separate log-normal distributions. 展开更多
关键词 discontinuously reinforced aluminum matrix composites Ti B2 wedge-shaped copper mold casting particle distribution particle engulfment
下载PDF
Effect of sintering parameters on the microstructure and thermal conductivity of diamond/Cu composites prepared by high pressure and high temperature infiltration 被引量:6
19
作者 Hui Chen Cheng-chang Jia Shang-jie Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第2期180-186,共7页
Pure Cu composites reinforced with diamond particles were fabricated by a high pressure and high temperature (HPHT) infiltration technique. Their microstructural evolution and thermal conductivity were presented as ... Pure Cu composites reinforced with diamond particles were fabricated by a high pressure and high temperature (HPHT) infiltration technique. Their microstructural evolution and thermal conductivity were presented as a function of sintering parameters (temperature, pressure, and time). The improvement in interfacial bonding strength and the maximum thermM conductivity of 750 W/(m.K) were achieved at the optimal sintering parameters of 1200℃, 6 GPa and 10 min. It is found that the thermal conductivity of the composites depends strongly on sintering pressure. When the sintering pressure is above 6 GPa, the diamond skeleton is detected, which greatly contributes to the excellent thermal conductivity. 展开更多
关键词 metallic matrix composites particle reinforced composites copper diamonds INFILTRATION microstructuralevolution thermal conductivity
下载PDF
Tribological behavior of self lubricating Cu/MoS_2 composites fabricated by powder metallurgy 被引量:12
20
作者 Mohammad MOAZAMI-GOUDARZI Aram NEMATI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第5期946-956,共11页
The effects of MoS2 content on microstructure, density, hardness and wear resistance of pure copper were studied. Copper-based composites containing 0-10%(mass fraction) MoS2 particles were fabricated by mechanical ... The effects of MoS2 content on microstructure, density, hardness and wear resistance of pure copper were studied. Copper-based composites containing 0-10%(mass fraction) MoS2 particles were fabricated by mechanical milling and hot pressing from pure copper and MoS2 powders. Wear resistance was evaluated in dry sliding condition using a pin on disk configuration at a constant sliding speed of 0.2 m/s. Hardness measurements showed a critical MoS2 content of 2.5% at which a hardness peak was attained. Regardless of the applied normal load, the lowest coefficient of friction and wear loss were attained for Cu/2.5 MoS2 composite. While coefficient of friction decreased when the applied normal load was raised from 1 to 4 N at any reinforcement content, the wear volume increased with increasing normal load. SEM micrographs from the worn surfaces and debris revealed that the wear mechanism was changed from mainly adhesion in pure copper to a combination of abrasion and delamination in Cu/MoS2 composites. 展开更多
关键词 copper matrix composite microstxucture coefficient of friction wear mechanism
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部