The copper based catalysts, CuO/T-Al2O3, CuO/y-Al2O3-cordierite (Cord) and CuO/Cord, were prepared by impregnation method. The catalytic activity of the catalysts was tested in absence and presence of water vapor,an...The copper based catalysts, CuO/T-Al2O3, CuO/y-Al2O3-cordierite (Cord) and CuO/Cord, were prepared by impregnation method. The catalytic activity of the catalysts was tested in absence and presence of water vapor,and the catalysts were characterized. Temperature program desorption (TPD) experiments or toluene and water on the catalysts were carried out. The influence of water vapor on the activity of the catalysts was discussed. Results showed that addition of the water vapor has a significant negative effect on the catalytic activity of the catalysts.The higher the concentration of the Water vapor in feed steam was, the lower the catalytic activity of the copper based catalysts became, which could be mainly ascribed to the competition of water molecules with toluene molecules for adsorption on the catalyst surfaces. TPD experiments showed that the strength of the interaction between water molecules and three catalysts followed the order: CuO/γ-Al2O3〉CuO/γ-Al2O3-Cord〉CuO/Cord. As a consequence of that, the degree of degradation in the catalytic activity of these three catalysts by the water vapor followed the order: CuO/γ-Al2O3〉CuO/y-Al2O3-Cord〉CuO/Cord. However, the negative effect of the water vapor was reversible.展开更多
Copper base alloy was overlaid onto 35CrMnSiA steel plate by tungsten inert gas (TIG) welding method. The heat transfer process was simulated, the microstructures of the copper base overlay were analyzed by scanning...Copper base alloy was overlaid onto 35CrMnSiA steel plate by tungsten inert gas (TIG) welding method. The heat transfer process was simulated, the microstructures of the copper base overlay were analyzed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), and the friction and abrasion properties of the overlay were measured. The results show that the Fe content increases in the overlay with increasing the welding current. And with the increase of Fe content in the overlay, the friction coefficient increases and the wear mechanism changes from oxidation wear to abrasive wear and plough wear, which is related to the size and quantity of Fe grains in the overlay. While with the increase of Fe content in the overlay, the protection of oxidation layer against the oxidation wear on the melted metal decreases.展开更多
Mechanical properties and tribological behavior of a novel cast heat resisting copper based alloy are investigated. The corresponding properties of a commercial aluminum bronze C95500 (ASTM B30) are compared with the ...Mechanical properties and tribological behavior of a novel cast heat resisting copper based alloy are investigated. The corresponding properties of a commercial aluminum bronze C95500 (ASTM B30) are compared with the alloy. The results show that the alloy possesses better mechanical properties and tribological behaviors than that of C95500 at elevated temperature. The tensile strength, elongation and hardness at 500℃ are 470MPa, 2.5% and HB220, respectively. The wear rate of the developed alloy at ambient and elevated temperature is about one sixth and one fortieth of that of C95500, respectively. The alloy is very suitable for ma nufacturing heat resisting and wear resisting parts. Major strengthening mechanisms for the alloy are solution strengthening and the second phase strengthening.展开更多
The nano ZrO2-supported copper-based catalysts for methane combustion were investigated by means of N2 adsorption, TEM, XRD, H2-TPR techniques and the test of methane oxidation. Two kinds of ZrO2 were used as support,...The nano ZrO2-supported copper-based catalysts for methane combustion were investigated by means of N2 adsorption, TEM, XRD, H2-TPR techniques and the test of methane oxidation. Two kinds of ZrO2 were used as support, one (ZrO2-1) was obtained from the commercial ZrO2 and the other (ZrO2-2) was issued from the thermal decomposition of zirconium nitrate. It was found that the CuO/ZrO2-2 catalyst was more active than CuO/ZrO2-1. N2 adsorption, H2-TPR and XRD measurements showed that larger surface area, better reduction property, presence of tetragonal ZrO2 and higher dispersion of active component for CuO/ZrO2-2 than that of CuO/ZrO2-1. These factors could be the dominating reasons for its higher activity for methane combustion.展开更多
The catalytic activity for the synthesis of methanol from carbon dioxide and hydrogen was measured on various binary and ternary catalysts containing copper oxide under a pressure of 10 atm. Among these samples the ca...The catalytic activity for the synthesis of methanol from carbon dioxide and hydrogen was measured on various binary and ternary catalysts containing copper oxide under a pressure of 10 atm. Among these samples the catalysts, CuO/ZnO/γ-Al_2O_3, demonstrated the highest activity and selectivity to methanol; MnO, as third component, had no promotional effect on the activity of meth- anol formation. Based on a simple power rate law the apparent activation energy estimation and par- tial pressure dependence measurement were accomplished over eight catalysts. The activation energies varied from 40 to 120 kJ / mol depending on the composition of catalysts. The rates of methanol for- mation to be 0.3 -- 0.9 order in H_2 and about 0.1 -- 0.2 order in CO_2 were reported.展开更多
Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their pertormances tor methanol synthesis from syngas have been investigated. The influences of preparation ...Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their pertormances tor methanol synthesis from syngas have been investigated. The influences of preparation methods of aluminum emulsions on physicochemical and catalytic properties of catalysts were studied by XRD, SEM, XPS,N2 adsorption-desorption techniques and methanol synthesis from syngas. The preparation methods of aluminum emulsions were found to influence the catalytic activity, CuO crystallite size, surface area and Cu0 surface area and reduction process. The results show that the catalyst CN using the aluminum source prepared by addition the ammonia into the aluminum nitrate (NP) exhibited the best catalytic performance for methanol synthesis from syngas.展开更多
Effects of nickel component,thiourea,glue and chloride ions and their interactions on the passivation of copper–nickel based alloy scrap anodes were investigated by combining conventional electrochemical techniques.R...Effects of nickel component,thiourea,glue and chloride ions and their interactions on the passivation of copper–nickel based alloy scrap anodes were investigated by combining conventional electrochemical techniques.Results obtained from chronopotentiometry and linear voltammetry curves showed that the Ni component made electrochemical stability of the anode strong and difficult to be corroded,caused by the adsorption of generated Cu2O,NiO or copper powder to the anode surface.The Ni2+reducing Cu2+to Cu+or copper powder aggravated the anode passivation.In a certain range of the glue concentration≤8×10–6 or thiourea concentration≤4×10–6,the increase of glue or thiourea concentration increases the anode passivation time.Over this range,glue and thiourea played an adverse effect.The increase of chloride ions concentration led to the increase in passivation time.展开更多
The laser cladding of Ni1015 alloy on Cu substrate was prepared by a high power continuous wave CO2 laser. Its microstructure was analyzed by optical microscope (OM), scanning electron microscope (SEM), and X-Ray ...The laser cladding of Ni1015 alloy on Cu substrate was prepared by a high power continuous wave CO2 laser. Its microstructure was analyzed by optical microscope (OM), scanning electron microscope (SEM), and X-Ray diffraction (XRD). The average microhardness of the cladding coating was Hv 280, which was almost three times of that of the Cu substrate (Hv 85). OM and SEM observations showed that the obtained coating had a smooth and uniform surface, as well as a metallurgical combination with the Cu substrate without cracks and pores at the interface. With the addition of copper into the nickel-based alloy, the differences of thermal expansion coefficient and melting point between the interlayer and cladding were reduced, which resulted in low stresses during rapid cooling. Moreover, large amount of (Cu, Ni) solid solution formed a metallurgical bonding between the cladding coating and the substrate, which also relaxed the stresses, leading to the reduction of interfacial cracks and pores after laser cladding.展开更多
[Objectives] The effects of copper-based nutrient foliar fertilizer on photosynthetic characteristics,yield,accumulation and distribution of trace elements in various organs,disease prevention effect and soil enzyme a...[Objectives] The effects of copper-based nutrient foliar fertilizer on photosynthetic characteristics,yield,accumulation and distribution of trace elements in various organs,disease prevention effect and soil enzyme activity were studied,so as to provide a theoretical basis for the application of foliar fertilizers in cotton production. [Methods]Through two years of field experiments,six treatments were set in total,namely spraying water( CK),traditional Bordeaux mixture( BDM),Kocide 2000( KCD),copper-based nutrient foliar fertilizer( CF),iron-copper-based nutrient foliar fertilizer( CFFe),and zinc-boron-copper-based nutrient foliar fertilizer( CFZnB). Randomized block arrangement was adopted. Chlorophyll content in leaves was measured at each growth stage of the cotton. Photosynthetic characteristics of leaves were measured at the peak bolling stage. Plants were sampled at initial boll opening stage. The whole plant was divided into root,stem,leaf and cotton boll parts,in which the total copper,total zinc,total iron contents and accumulations were determined. Soil samples were collected from each plot,followed by the determination of soil enzyme activity. Disease index was investigated at bud,flowering and boll-forming and boll opening stage. [Results]( 1) Spraying CFFe,CFZnB,CF and KCD could significantly improve chlorophyll content of cotton leaves,and the CFFe treatment had the highest increase up to13. 30%,followed by the CFZnB treatment,which was 11. 40% higher than the CK; and photosynthetic rate,stomata conductance and transpiration rate could be improved significantly,and the CFFe treatment showed the highest photosynthetic rate,which increased by 26. 35% compared with the CK,followed by the CFZnB treatment,which increased by 17. 96% compared with CK; and intercellular CO2 concentration was significantly reduced.( 2) Spraying BDM,KCD,CF,CFFe and CFZnB can significantly increase total copper content and accumulation in various cotton organs( except the total copper content in the stem part of the CFZnB treatment; the CFZnB and CFFe treatments can significantly increase total zinc content and accumulation in various cotton organs; and spraying CFFe,CFZnB and CF can significantly increase total iron content and accumulation in various cotton organs( except the total iron content in the stem part of the CF treatment).( 3)Spraying CFFe,CFZnB,CF,KCD and BDM greatly reduced the disease index at flowering and boll-forming and boll opening stages.( 4) The CFZnB and CFFe treatments had the highest soil urease activity,which was 7. 14% higher than that of the CK,but the difference from the CK was not significant; the catalase activity of each treatment was significantly higher than that of the BDM treatment; and the sucrase activity of each treatment was significantly higher than that of the CK.( 5) Spraying CFFe,CFZnB,CF and KCD significantly improved lint yield of cotton,and the CFZnB treatment showed the highest yield increase up to 12. 34%,followed by the CFFe treatment,with an increase in the range of 8. 77%-10. 20%. [Conclusions]Copper-based nutrient foliar fertilizers have dual functions of disease control and prevention and plant nutrition and health care,and not only can significantly increase cotton yield,but also has certain disease prevention effect.It is recommended to use copper-based nutrient foliar fertilizers.展开更多
A new three-dimensional supramolecule composed of copper-Schiff base complex, [Cu(naphdien)]Cl·H2O, where naphdien is Schiff base of 2-hydroxy-1-naphthaldehyde and diethylenetriamine, has been synthesized and d...A new three-dimensional supramolecule composed of copper-Schiff base complex, [Cu(naphdien)]Cl·H2O, where naphdien is Schiff base of 2-hydroxy-1-naphthaldehyde and diethylenetriamine, has been synthesized and determined by single-crystal X-ray diffraction. It belongs to the monoclinic system, space group P21/c, with a = 7.3490(15), b = 7.0847(16), c = 30.845(3)A, β= 95.33(3)°, V = 1599.0(5)A3, Z = 4, C15 H20ClCuN3O2, Mr = 373.33, De = 1.551 g/cm3, μ = 1.543 mm^-1, F(000) = 772, R = 0.0536 and wR = 0.0927 for 2788 unique reflections with 1659 observed ones (I 〉2σ(I)). In the crystal structure, mononuclear units [Cu(naphdien)]Cl·H2O are linked into a two-dimensional framework via strong hydrogen bonds, and extended into a three-dimensional supramolecular structure through π-π stacking interactions.展开更多
A new chain-like coordination polymer, namely, [CuL]n (1, Na2L = 2-[(2-hydroxy- benzylidene)-amino]-benzenesulfonic acid sodium salt), has been synthesized and characterized by single-crystal X-ray diffraction, IR...A new chain-like coordination polymer, namely, [CuL]n (1, Na2L = 2-[(2-hydroxy- benzylidene)-amino]-benzenesulfonic acid sodium salt), has been synthesized and characterized by single-crystal X-ray diffraction, IR spectroscopy and elemental analysis. Complex 1 crystallizes in monoclinic system, space group P21/c with a = 9.2296(16), b = 10.4754(18), c = 12.200(2) A, β = 102.392(2)°, V = 1152.0(3)A3, CI3H9CuNOaN, Mr = 338.83, Dc = 1.953 g/cm3, Z = 4, F(000) = 684, p = 2.089 mm-1, the final R = 0.0376 and wR = 0.0956. X-ray diffraction analyses indicate that 1 displays a square-pyramidal metal center with NO4 donor sets. The sulfonate-derived Schiff base serves as a common N,O,O'-tridentate and a unique O-bridged ligand connecting the metals. Dinuclear copper complexes serve as secondary building blocks (SBUs) to construct an unusual 2D coordination network. In the crystal, the components form a stable 3D supramolecular architecture by C-H...O interactions and to-stacking展开更多
A calculation formula of ln γ i 0 for solute element i in liquid alloys was derived by use of free volume theory and Miedema formation enthalpy model. The values of ln γ i 0 of solute elements in liqui...A calculation formula of ln γ i 0 for solute element i in liquid alloys was derived by use of free volume theory and Miedema formation enthalpy model. The values of ln γ i 0 of solute elements in liquid copper at 1273 K were obtained. The results obtained show that the coincidence rate of sign (positive or negative) was 90% for the calculated and experimental values, which were basically in the same magnitude.展开更多
The tarnishing test in the presence of hydrogen sulfide(H2S) vapors has been used to investigate the tarnish resistance capability of copper-based alloys coated with Si02-like films by means of plasma-enhanced chemi...The tarnishing test in the presence of hydrogen sulfide(H2S) vapors has been used to investigate the tarnish resistance capability of copper-based alloys coated with Si02-like films by means of plasma-enhanced chemical vapor deposition(PECVD) fed with a tetraethoxysilane/oxygen mixture.The chemical and morphological properties of the films have been characterized by using infrared absorption spectroscopy(IR) and scanning electron microscopy(SEM)with energy disperse spectroscopy(EDS).The corrosion products of the samples after the tarnishing test have been identified by X-ray diffraction analysis(XRD).It has been found that SiO2-like films formed via PECVD with a high O2 flow rate could protect copper-based alloys from H2S vapor tarnishing.The alloys coated at the O2 flow rate of 20 sccm remain uncorroded after 54days of H2S vapor tarnish testing.The corrosion products for the alloys deposited at a low O2flow rate after 54 days of tarnish testing are mainly composed of brochantite.展开更多
Two new Cu(Ⅱ) complexes have been synthesized with two different bidentate N2O2 donor Schiffbase ligands HL1 (2-((E)-(4-chlorophenylimino)methyl)-6-bromo-4-chlorophenol) and HL2 (2-((E)-(2-chlorophenyl...Two new Cu(Ⅱ) complexes have been synthesized with two different bidentate N2O2 donor Schiffbase ligands HL1 (2-((E)-(4-chlorophenylimino)methyl)-6-bromo-4-chlorophenol) and HL2 (2-((E)-(2-chlorophenylimino)methyl)-6-bromo-4-chlorophenol), respectively. Both complexes 1 and 2 have been characterized by elemental analysis and single-crystal X-ray diffraction studies. Structural studies reveal that in both complexes the metal centers are four-coordinated with N202 donor set of Schiff base ligands. Complex 1 belongs to the tetragonal system, space group P4(3)2(1)2 with a = 10.2379(2), b = 10.2379(2), c = 24.9623(90) A, V = 2616.41(12) A^3, Z = 4, Dc = 1.908 g/cm^3,μ(MoKa) = 4.3327 mm^-1, F(000) = 1468, S = 0.999, the final R = 0.0345 and wR = 0.0835 for 3506 unique reflections (Rint= 0.0428) with 3249 observed ones (I 〉 2σ(I)). Complex 2 is of monoclinic system, space group P21/c with a = 11.064(3), b = 9.437(2), c = 13.277(4) A, fl = 108.997(3)°, V = 1310.8(6) A^3, Z = 2, Dc= 1.904 g/cm^3,μ(MoKa) = 4.319 mm^-1, F(000) = 734, S = 0.997, the final R = 0.0282 and wR = 0.0619 for 3491 unique reflections (Rint = 0.0428) with 2777 observed ones (I 〉 20(I)). The units of the complex are linked via weak interactions, such as C-H…Br hydrogen bonds together with Cl…C1 and Cu…Cl interactions, leading to the formation of one-dimensional chain and two-dimensional network and stabilizing the crystal structure.展开更多
The effect of Al, Zn, Sn, Mn, Si and Ni on the color characteristics of binary copper-base alloys has been researched systematically and quantitatively. The results show that all alloying elements decrease the red con...The effect of Al, Zn, Sn, Mn, Si and Ni on the color characteristics of binary copper-base alloys has been researched systematically and quantitatively. The results show that all alloying elements decrease the red content of an alloy at different levels but have different effects on the yellow color. Al and Zn enhance the yellow content of an alloy, whereas Sn, Mn, Si and Ni decrease the yellow content. When the alloys with different karat gold colors are imitated, Al and Zn are the most important color mixing elements and Sn, Mn, Si and Ni can be used as auxiliary.展开更多
Four stereoisomers of a copper-(Schiff-base) complex with double chiral centers were applied to catalyze the asymmetric cyclopropanation. Two of the stereoisomers were also efficient catalysts affording high enantiom...Four stereoisomers of a copper-(Schiff-base) complex with double chiral centers were applied to catalyze the asymmetric cyclopropanation. Two of the stereoisomers were also efficient catalysts affording high enantiomeric excess of up to 91.8%. A mechanism that predicts the observed results accurately was proposed.展开更多
A new copper(Ⅱ) complex of CuLCl_2, where L = N^1-(1-pyrazin-2-yl-ethylidene)-ethane-1,2-diamine, a tridentate Schiff base derived from 2-acetylpyrazine has been prepared. The complex has been characterized by FT-IR,...A new copper(Ⅱ) complex of CuLCl_2, where L = N^1-(1-pyrazin-2-yl-ethylidene)-ethane-1,2-diamine, a tridentate Schiff base derived from 2-acetylpyrazine has been prepared. The complex has been characterized by FT-IR, elemental analysis and single-crystal X-ray diffraction studies. Structural studies reveal that CuLCl_2 is a mononuclear copper(Ⅱ) complex with distorted square pyramidal geometry. Antifungal activity of CuLCl_2 was investigated by use of microcalorimetric measurement system and evaluated against S. pombe. It has high antifungal activity with IC_(50) = 213 μg/mL.展开更多
基金Supported by the National-Natural Science Foundation of China (20936001), the Natural Science Foundation of Guangdong Province, and the State Key Lab of Subtropical Building Science, South China University of Technology (x2yj C709028Z).
文摘The copper based catalysts, CuO/T-Al2O3, CuO/y-Al2O3-cordierite (Cord) and CuO/Cord, were prepared by impregnation method. The catalytic activity of the catalysts was tested in absence and presence of water vapor,and the catalysts were characterized. Temperature program desorption (TPD) experiments or toluene and water on the catalysts were carried out. The influence of water vapor on the activity of the catalysts was discussed. Results showed that addition of the water vapor has a significant negative effect on the catalytic activity of the catalysts.The higher the concentration of the Water vapor in feed steam was, the lower the catalytic activity of the copper based catalysts became, which could be mainly ascribed to the competition of water molecules with toluene molecules for adsorption on the catalyst surfaces. TPD experiments showed that the strength of the interaction between water molecules and three catalysts followed the order: CuO/γ-Al2O3〉CuO/γ-Al2O3-Cord〉CuO/Cord. As a consequence of that, the degree of degradation in the catalytic activity of these three catalysts by the water vapor followed the order: CuO/γ-Al2O3〉CuO/y-Al2O3-Cord〉CuO/Cord. However, the negative effect of the water vapor was reversible.
文摘Copper base alloy was overlaid onto 35CrMnSiA steel plate by tungsten inert gas (TIG) welding method. The heat transfer process was simulated, the microstructures of the copper base overlay were analyzed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), and the friction and abrasion properties of the overlay were measured. The results show that the Fe content increases in the overlay with increasing the welding current. And with the increase of Fe content in the overlay, the friction coefficient increases and the wear mechanism changes from oxidation wear to abrasive wear and plough wear, which is related to the size and quantity of Fe grains in the overlay. While with the increase of Fe content in the overlay, the protection of oxidation layer against the oxidation wear on the melted metal decreases.
文摘Mechanical properties and tribological behavior of a novel cast heat resisting copper based alloy are investigated. The corresponding properties of a commercial aluminum bronze C95500 (ASTM B30) are compared with the alloy. The results show that the alloy possesses better mechanical properties and tribological behaviors than that of C95500 at elevated temperature. The tensile strength, elongation and hardness at 500℃ are 470MPa, 2.5% and HB220, respectively. The wear rate of the developed alloy at ambient and elevated temperature is about one sixth and one fortieth of that of C95500, respectively. The alloy is very suitable for ma nufacturing heat resisting and wear resisting parts. Major strengthening mechanisms for the alloy are solution strengthening and the second phase strengthening.
文摘The nano ZrO2-supported copper-based catalysts for methane combustion were investigated by means of N2 adsorption, TEM, XRD, H2-TPR techniques and the test of methane oxidation. Two kinds of ZrO2 were used as support, one (ZrO2-1) was obtained from the commercial ZrO2 and the other (ZrO2-2) was issued from the thermal decomposition of zirconium nitrate. It was found that the CuO/ZrO2-2 catalyst was more active than CuO/ZrO2-1. N2 adsorption, H2-TPR and XRD measurements showed that larger surface area, better reduction property, presence of tetragonal ZrO2 and higher dispersion of active component for CuO/ZrO2-2 than that of CuO/ZrO2-1. These factors could be the dominating reasons for its higher activity for methane combustion.
基金Work financially supported by the National Natural Science Foundation of China.
文摘The catalytic activity for the synthesis of methanol from carbon dioxide and hydrogen was measured on various binary and ternary catalysts containing copper oxide under a pressure of 10 atm. Among these samples the catalysts, CuO/ZnO/γ-Al_2O_3, demonstrated the highest activity and selectivity to methanol; MnO, as third component, had no promotional effect on the activity of meth- anol formation. Based on a simple power rate law the apparent activation energy estimation and par- tial pressure dependence measurement were accomplished over eight catalysts. The activation energies varied from 40 to 120 kJ / mol depending on the composition of catalysts. The rates of methanol for- mation to be 0.3 -- 0.9 order in H_2 and about 0.1 -- 0.2 order in CO_2 were reported.
文摘Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their pertormances tor methanol synthesis from syngas have been investigated. The influences of preparation methods of aluminum emulsions on physicochemical and catalytic properties of catalysts were studied by XRD, SEM, XPS,N2 adsorption-desorption techniques and methanol synthesis from syngas. The preparation methods of aluminum emulsions were found to influence the catalytic activity, CuO crystallite size, surface area and Cu0 surface area and reduction process. The results show that the catalyst CN using the aluminum source prepared by addition the ammonia into the aluminum nitrate (NP) exhibited the best catalytic performance for methanol synthesis from syngas.
基金Project(51574135)supported by the National Natural Science Foundation of ChinaProject(KKPT201563022)supported by the Collaborative Innovation Center of Kunming University of Science and Technology,China
文摘Effects of nickel component,thiourea,glue and chloride ions and their interactions on the passivation of copper–nickel based alloy scrap anodes were investigated by combining conventional electrochemical techniques.Results obtained from chronopotentiometry and linear voltammetry curves showed that the Ni component made electrochemical stability of the anode strong and difficult to be corroded,caused by the adsorption of generated Cu2O,NiO or copper powder to the anode surface.The Ni2+reducing Cu2+to Cu+or copper powder aggravated the anode passivation.In a certain range of the glue concentration≤8×10–6 or thiourea concentration≤4×10–6,the increase of glue or thiourea concentration increases the anode passivation time.Over this range,glue and thiourea played an adverse effect.The increase of chloride ions concentration led to the increase in passivation time.
基金This research was financially supported by the National Natural Science Foundation of China (No.50574020) and Shanghai BaoSteel Group Co.
文摘The laser cladding of Ni1015 alloy on Cu substrate was prepared by a high power continuous wave CO2 laser. Its microstructure was analyzed by optical microscope (OM), scanning electron microscope (SEM), and X-Ray diffraction (XRD). The average microhardness of the cladding coating was Hv 280, which was almost three times of that of the Cu substrate (Hv 85). OM and SEM observations showed that the obtained coating had a smooth and uniform surface, as well as a metallurgical combination with the Cu substrate without cracks and pores at the interface. With the addition of copper into the nickel-based alloy, the differences of thermal expansion coefficient and melting point between the interlayer and cladding were reduced, which resulted in low stresses during rapid cooling. Moreover, large amount of (Cu, Ni) solid solution formed a metallurgical bonding between the cladding coating and the substrate, which also relaxed the stresses, leading to the reduction of interfacial cracks and pores after laser cladding.
文摘[Objectives] The effects of copper-based nutrient foliar fertilizer on photosynthetic characteristics,yield,accumulation and distribution of trace elements in various organs,disease prevention effect and soil enzyme activity were studied,so as to provide a theoretical basis for the application of foliar fertilizers in cotton production. [Methods]Through two years of field experiments,six treatments were set in total,namely spraying water( CK),traditional Bordeaux mixture( BDM),Kocide 2000( KCD),copper-based nutrient foliar fertilizer( CF),iron-copper-based nutrient foliar fertilizer( CFFe),and zinc-boron-copper-based nutrient foliar fertilizer( CFZnB). Randomized block arrangement was adopted. Chlorophyll content in leaves was measured at each growth stage of the cotton. Photosynthetic characteristics of leaves were measured at the peak bolling stage. Plants were sampled at initial boll opening stage. The whole plant was divided into root,stem,leaf and cotton boll parts,in which the total copper,total zinc,total iron contents and accumulations were determined. Soil samples were collected from each plot,followed by the determination of soil enzyme activity. Disease index was investigated at bud,flowering and boll-forming and boll opening stage. [Results]( 1) Spraying CFFe,CFZnB,CF and KCD could significantly improve chlorophyll content of cotton leaves,and the CFFe treatment had the highest increase up to13. 30%,followed by the CFZnB treatment,which was 11. 40% higher than the CK; and photosynthetic rate,stomata conductance and transpiration rate could be improved significantly,and the CFFe treatment showed the highest photosynthetic rate,which increased by 26. 35% compared with the CK,followed by the CFZnB treatment,which increased by 17. 96% compared with CK; and intercellular CO2 concentration was significantly reduced.( 2) Spraying BDM,KCD,CF,CFFe and CFZnB can significantly increase total copper content and accumulation in various cotton organs( except the total copper content in the stem part of the CFZnB treatment; the CFZnB and CFFe treatments can significantly increase total zinc content and accumulation in various cotton organs; and spraying CFFe,CFZnB and CF can significantly increase total iron content and accumulation in various cotton organs( except the total iron content in the stem part of the CF treatment).( 3)Spraying CFFe,CFZnB,CF,KCD and BDM greatly reduced the disease index at flowering and boll-forming and boll opening stages.( 4) The CFZnB and CFFe treatments had the highest soil urease activity,which was 7. 14% higher than that of the CK,but the difference from the CK was not significant; the catalase activity of each treatment was significantly higher than that of the BDM treatment; and the sucrase activity of each treatment was significantly higher than that of the CK.( 5) Spraying CFFe,CFZnB,CF and KCD significantly improved lint yield of cotton,and the CFZnB treatment showed the highest yield increase up to 12. 34%,followed by the CFFe treatment,with an increase in the range of 8. 77%-10. 20%. [Conclusions]Copper-based nutrient foliar fertilizers have dual functions of disease control and prevention and plant nutrition and health care,and not only can significantly increase cotton yield,but also has certain disease prevention effect.It is recommended to use copper-based nutrient foliar fertilizers.
基金This work was supported by the National Natural Science Foundation of China (Nos. 20671011, 20331010, 90406002 and 90406024)the 111 Project (B07012) and Key Laboratory of Structural Chemistry Foundation (No. 060017)
文摘A new three-dimensional supramolecule composed of copper-Schiff base complex, [Cu(naphdien)]Cl·H2O, where naphdien is Schiff base of 2-hydroxy-1-naphthaldehyde and diethylenetriamine, has been synthesized and determined by single-crystal X-ray diffraction. It belongs to the monoclinic system, space group P21/c, with a = 7.3490(15), b = 7.0847(16), c = 30.845(3)A, β= 95.33(3)°, V = 1599.0(5)A3, Z = 4, C15 H20ClCuN3O2, Mr = 373.33, De = 1.551 g/cm3, μ = 1.543 mm^-1, F(000) = 772, R = 0.0536 and wR = 0.0927 for 2788 unique reflections with 1659 observed ones (I 〉2σ(I)). In the crystal structure, mononuclear units [Cu(naphdien)]Cl·H2O are linked into a two-dimensional framework via strong hydrogen bonds, and extended into a three-dimensional supramolecular structure through π-π stacking interactions.
基金Supported by Guangxi Provincial Department of Education(No.YB2014333)the Scientific research and technological development project of Guilin(No.20110330)+2 种基金the Project of Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources(Guangxi Normal University)Ministry of Education of China(CMEMR2011-13)Key Subjects of Universities in Guangxi Province Applied Chemistry(2007<20>)
文摘A new chain-like coordination polymer, namely, [CuL]n (1, Na2L = 2-[(2-hydroxy- benzylidene)-amino]-benzenesulfonic acid sodium salt), has been synthesized and characterized by single-crystal X-ray diffraction, IR spectroscopy and elemental analysis. Complex 1 crystallizes in monoclinic system, space group P21/c with a = 9.2296(16), b = 10.4754(18), c = 12.200(2) A, β = 102.392(2)°, V = 1152.0(3)A3, CI3H9CuNOaN, Mr = 338.83, Dc = 1.953 g/cm3, Z = 4, F(000) = 684, p = 2.089 mm-1, the final R = 0.0376 and wR = 0.0956. X-ray diffraction analyses indicate that 1 displays a square-pyramidal metal center with NO4 donor sets. The sulfonate-derived Schiff base serves as a common N,O,O'-tridentate and a unique O-bridged ligand connecting the metals. Dinuclear copper complexes serve as secondary building blocks (SBUs) to construct an unusual 2D coordination network. In the crystal, the components form a stable 3D supramolecular architecture by C-H...O interactions and to-stacking
文摘A calculation formula of ln γ i 0 for solute element i in liquid alloys was derived by use of free volume theory and Miedema formation enthalpy model. The values of ln γ i 0 of solute elements in liquid copper at 1273 K were obtained. The results obtained show that the coincidence rate of sign (positive or negative) was 90% for the calculated and experimental values, which were basically in the same magnitude.
基金supported by the Special Fund for Talent of Wuhan Institute of Technology,China(No.237127)the"Fellowship for Junior Researchers"from Politecnico di Torino and Regione Piemonte,Italy
文摘The tarnishing test in the presence of hydrogen sulfide(H2S) vapors has been used to investigate the tarnish resistance capability of copper-based alloys coated with Si02-like films by means of plasma-enhanced chemical vapor deposition(PECVD) fed with a tetraethoxysilane/oxygen mixture.The chemical and morphological properties of the films have been characterized by using infrared absorption spectroscopy(IR) and scanning electron microscopy(SEM)with energy disperse spectroscopy(EDS).The corrosion products of the samples after the tarnishing test have been identified by X-ray diffraction analysis(XRD).It has been found that SiO2-like films formed via PECVD with a high O2 flow rate could protect copper-based alloys from H2S vapor tarnishing.The alloys coated at the O2 flow rate of 20 sccm remain uncorroded after 54days of H2S vapor tarnish testing.The corrosion products for the alloys deposited at a low O2flow rate after 54 days of tarnish testing are mainly composed of brochantite.
基金Project supported by the research grant of Phytochemistry Key Laboratory of Shaanxi Province (No. 12JS007)
文摘Two new Cu(Ⅱ) complexes have been synthesized with two different bidentate N2O2 donor Schiffbase ligands HL1 (2-((E)-(4-chlorophenylimino)methyl)-6-bromo-4-chlorophenol) and HL2 (2-((E)-(2-chlorophenylimino)methyl)-6-bromo-4-chlorophenol), respectively. Both complexes 1 and 2 have been characterized by elemental analysis and single-crystal X-ray diffraction studies. Structural studies reveal that in both complexes the metal centers are four-coordinated with N202 donor set of Schiff base ligands. Complex 1 belongs to the tetragonal system, space group P4(3)2(1)2 with a = 10.2379(2), b = 10.2379(2), c = 24.9623(90) A, V = 2616.41(12) A^3, Z = 4, Dc = 1.908 g/cm^3,μ(MoKa) = 4.3327 mm^-1, F(000) = 1468, S = 0.999, the final R = 0.0345 and wR = 0.0835 for 3506 unique reflections (Rint= 0.0428) with 3249 observed ones (I 〉 2σ(I)). Complex 2 is of monoclinic system, space group P21/c with a = 11.064(3), b = 9.437(2), c = 13.277(4) A, fl = 108.997(3)°, V = 1310.8(6) A^3, Z = 2, Dc= 1.904 g/cm^3,μ(MoKa) = 4.319 mm^-1, F(000) = 734, S = 0.997, the final R = 0.0282 and wR = 0.0619 for 3491 unique reflections (Rint = 0.0428) with 2777 observed ones (I 〉 20(I)). The units of the complex are linked via weak interactions, such as C-H…Br hydrogen bonds together with Cl…C1 and Cu…Cl interactions, leading to the formation of one-dimensional chain and two-dimensional network and stabilizing the crystal structure.
基金Financially supported by China National Gold Management Bureau for basic theory research
文摘The effect of Al, Zn, Sn, Mn, Si and Ni on the color characteristics of binary copper-base alloys has been researched systematically and quantitatively. The results show that all alloying elements decrease the red content of an alloy at different levels but have different effects on the yellow color. Al and Zn enhance the yellow content of an alloy, whereas Sn, Mn, Si and Ni decrease the yellow content. When the alloys with different karat gold colors are imitated, Al and Zn are the most important color mixing elements and Sn, Mn, Si and Ni can be used as auxiliary.
文摘Four stereoisomers of a copper-(Schiff-base) complex with double chiral centers were applied to catalyze the asymmetric cyclopropanation. Two of the stereoisomers were also efficient catalysts affording high enantiomeric excess of up to 91.8%. A mechanism that predicts the observed results accurately was proposed.
基金supported by the National Natural Science Foundation of China(No.41701349)
文摘A new copper(Ⅱ) complex of CuLCl_2, where L = N^1-(1-pyrazin-2-yl-ethylidene)-ethane-1,2-diamine, a tridentate Schiff base derived from 2-acetylpyrazine has been prepared. The complex has been characterized by FT-IR, elemental analysis and single-crystal X-ray diffraction studies. Structural studies reveal that CuLCl_2 is a mononuclear copper(Ⅱ) complex with distorted square pyramidal geometry. Antifungal activity of CuLCl_2 was investigated by use of microcalorimetric measurement system and evaluated against S. pombe. It has high antifungal activity with IC_(50) = 213 μg/mL.