In this study, a 600 MPa hot-rolled corrosion-resistant steel plate produced by a specific company is investigated. Edge jagged defects and edge surface defects generated on both sides of the strip during production a...In this study, a 600 MPa hot-rolled corrosion-resistant steel plate produced by a specific company is investigated. Edge jagged defects and edge surface defects generated on both sides of the strip during production are characterized and analyzed. The results indicate that the distribution of reoxidation granules is located underneath the surface peel and that copper-containing granules diffuse along austenite grain boundaries. This phenomenon combined with the chemical composition and production parameters of a strip indicate that copper brittleness leads to edge jagged defects. However,the surface defects should be attributed to inherent defects on the surface of the strip. Measures that prevent surface oxidation and copper segregation at grain boundaries would likely eliminate these two types of edge defects.展开更多
文摘In this study, a 600 MPa hot-rolled corrosion-resistant steel plate produced by a specific company is investigated. Edge jagged defects and edge surface defects generated on both sides of the strip during production are characterized and analyzed. The results indicate that the distribution of reoxidation granules is located underneath the surface peel and that copper-containing granules diffuse along austenite grain boundaries. This phenomenon combined with the chemical composition and production parameters of a strip indicate that copper brittleness leads to edge jagged defects. However,the surface defects should be attributed to inherent defects on the surface of the strip. Measures that prevent surface oxidation and copper segregation at grain boundaries would likely eliminate these two types of edge defects.