A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a ...A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a precursor. The growth of Cu nucleus on silicon substrates by H2 reduction of Cu(hfac)2 was studied by atomic force microscopy and scanning electron microscopy. The growth mode of Cu nucleus is initially Volmer-Weber mode (island), and then transforms to Stranski-Rastanov mode (layer-by-layer plus island). The mechanism of Cu nucleation on silicon (100) substrates was further investigated by X-ray photoelectron spectroscopy. From Cu2p, O1s, F1s, Si2p patterns, the observed C=O, OH and CF3/CF2 should belong to Cu(hfac) formed by the thermal dissociation of Cu(hfac)2. H2 reacts with hfac on the surface, producing OH. With its accumulation, OH reacts with hfac, forming HO-hfac, and desorbs, meanwhile, the copper oxide is reduced, and thus the redox reaction between Cu(hafc)2 and H2 occurs.展开更多
Copper nitride film (Cu3N) and La-doped copper nitride films (LaxCu3N) were prepared on glass substrates by reactive magnetron sputtering of a pure Cu and a pure La targets under N2 atmosphere. The results show th...Copper nitride film (Cu3N) and La-doped copper nitride films (LaxCu3N) were prepared on glass substrates by reactive magnetron sputtering of a pure Cu and a pure La targets under N2 atmosphere. The results show that La-free film was composed of Cu3N crystallites with anti-ReO3 structure with (111) texture. The formation of the LaxCu3N films is affected strongly by La, and the peak intensity of the preferred crystalline [111]-orientation decreases with increasing the concentration of La. High concentration of La may prevent the formation of the Cu3N from crystallization. Compared with the Cu3N films, the resistivity of the LaxCu3N films have been decreased.展开更多
Cu3N and Al Cu3N films were prepared with reactive magnetron sputtering method. The two films were deposited on glass substrates at 0.8 Pa N2 partial pressure and 100 ℃ substrate temperature by using a pure Cu and AI...Cu3N and Al Cu3N films were prepared with reactive magnetron sputtering method. The two films were deposited on glass substrates at 0.8 Pa N2 partial pressure and 100 ℃ substrate temperature by using a pure Cu and AI target, respectively. X-ray diffraction (XRD) measurements show that the un-doped film was composed of Cu3N crystallites with anti-ReO3 structure and adopted [111] preferred orientation. XRD shows that the growth of Al-doped copper nitride films (AlxCu3N) was affected strongly by doping AI, the intensity of [111] peak decreases with increasing the concentration of Al and the high concentration of Al could prevent the Cu3N from crystallization. AFM shows that the surface of AlCu3N film is smoother than that of Cu3N film. Compared with the Cu3N films, the resistivities of the Al-doped copper nitride films (AlxCu3N) have been reduced, and the microhardness has been enhanced.展开更多
The direct deposition of diamond films on copper substrate has been suffered fromadhesion problems due to the mismatch of the thermal expansion coefficients of diamond andcopper. In this paper nuclei with valuable den...The direct deposition of diamond films on copper substrate has been suffered fromadhesion problems due to the mismatch of the thermal expansion coefficients of diamond andcopper. In this paper nuclei with valuable density were directly introduced thirough a submicrondiamond powder layer. The diamond grits partially were buried in the copper substrate leadingto better adhesion. Another method with nickel intermediate layer for enhancing the adhesionwas studied here in detail. It was suggested that Cu-Ni eutectic between the copper substrate andNi interlayer might contribute to the adhesion improvement. The quality of the diamond filmsdeposited wlth rnckel interlayer was investigated by scanning electron microscopy and Ramanspectroscopy.展开更多
Langmuir-Blodgett(LB)films of tetra-nonyl phthalocyanine copper (TNPcCu)were prepared.Molecular arrangement and orientation of these films were studied in detail.LB multilayer films of TNPcCu show a very Strong x-ray ...Langmuir-Blodgett(LB)films of tetra-nonyl phthalocyanine copper (TNPcCu)were prepared.Molecular arrangement and orientation of these films were studied in detail.LB multilayer films of TNPcCu show a very Strong x-ray diffration peak and two weak peaks which indicate that the LB films form a quasi-crystal structure which molecules are arranged orderly.IR reflection absorption spectra and polarized VIS absorption spectra not only confirm the previous result but also indicate that phthalocyanine rings orient nearly perpendicular to the substrate surface and perpendicular to the lifting direction and the side-chain segments are not preferred oriented.展开更多
Infrared spectra of alternating LB films of octadecyl-TCNQ/CuPc are studied. Charge-transfer complexes are formed in LB films and conductance increases about three orders than that of pure CuPc LB films.
The process of graphene cleaning of a copper film by bombarding it with Ar_(13) clusters is investigated by the molecular dynamics method.The kinetic energies of the clusters are 5,10,20,and 30 eV and the incident a...The process of graphene cleaning of a copper film by bombarding it with Ar_(13) clusters is investigated by the molecular dynamics method.The kinetic energies of the clusters are 5,10,20,and 30 eV and the incident angles are θ= 90°,75°,60°,45°,and 0°.It is obtained that the cluster energy should be in the interval 20 eV-30 eV for effective graphene cleaning.There is no cleaning effect at vertical incidence(θ =0°) of Ar_(13) clusters.The bombardments at 45° and 90° incident angles are the most effective on a moderate and large amount of deposited copper,respectively.展开更多
Nanocrystalline copper films were prepared by sputtering and then in situ straining experiments were performed using a trans- mission electron microscope. Macroscopically, these copper films exhibited very low ductili...Nanocrystalline copper films were prepared by sputtering and then in situ straining experiments were performed using a trans- mission electron microscope. Macroscopically, these copper films exhibited very low ductility (<l%). Dislocation activity was limited in regions far from propagating cracks. Near stable growing cracks, considerable local plasticity was observed. The evidence of slip ac- tivity both within grain interiors and in grain boundaries was also observed. Although some dislocation; moved very fast, others showed rates much lower than those typically measured for bulk copper. Fracture was intergranular, but not brittle. It occurred by linking of microcracks. Microcracks formed within a micrometer or so ahead of the main crack tip, usually within a grain boundary. Linking then took place by the easiest available path.展开更多
Pure Cu films and Cu alloy films containing insoluble substances(Zr and Cr)were deposited on Si(100)substrates,in the presence of interfacial native suboxide(SiOx),by magnetron sputtering.Samples were vacuum annealed ...Pure Cu films and Cu alloy films containing insoluble substances(Zr and Cr)were deposited on Si(100)substrates,in the presence of interfacial native suboxide(SiOx),by magnetron sputtering.Samples were vacuum annealed between 300℃and 500 ℃to investigate effects of Zr and Cr additions on the thermal performance of Cu films.After annealing,copper silicides were found in the Cu(Zr)films,while no detectable silicides were observed in Cu and Cu(Cr)films.Upon annealing,Zr accelerated the diffusion and reaction between the film and the substrate,and lowered the thermal stability of Cu(Zr)alloy films on Si substrates,which was ascribed to the‘purifying effect’of Zr on the Si substrates.Whereas,Cr prohibited the agglomeration of Cu films at 500℃and decreased the surface roughness.As a result,the diffusion of Cu in Si substrates for Cu(Cr)films was effectively inhibited.In contrast to the high resistivity of Cu(Zr)films,the final resistivity of about 2.76μΩ·cm was achieved for the Cu(Cr)film.These results indicate that Cu(Cr)films have higher thermal stability than Cu(Zr)films on Si substrates and are preferable in the advanced barrierless Cu metallization.展开更多
Variation of stress in attached copper film with an applied strain is measured by X-ray diffraction combined with a four-point bending method. A lower slope of the initial elastic segment of the curve of X-ray measure...Variation of stress in attached copper film with an applied strain is measured by X-ray diffraction combined with a four-point bending method. A lower slope of the initial elastic segment of the curve of X-ray measured stress versus applied strain results from incomplete elastic strain transferred from the substrate to the film due to insufficiently strong interface cohesion. So the slope of the initial elastic segment of the X-ray stress (or X-ray strain directly) of the film against the substrate applied strain may be used to measure the film-substrate cohesive strength. The yield strength of the attached copper film is much higher than that of the bulk material and varies linearly with the inverse of the film thickness.展开更多
Developing highly efficient and stable water oxidation catalysts based on abundant metallic elements is a challenge that must be met to fulfill the promise of water splitting for clean energy production.In this work,w...Developing highly efficient and stable water oxidation catalysts based on abundant metallic elements is a challenge that must be met to fulfill the promise of water splitting for clean energy production.In this work,we developed an oxygen evolution reaction catalyst consisting of a nanostructured film electrodeposited from a phosphate buffer solution(0.2mol/L,pH=12.0)containing Cu‐tricine complex.A Tafel plot showed that the required overpotential for a current densityof1.0mA/cm2was only395mV and the Tafel slope was46.7mV/decade.In addition,the Cu‐tricine film maintained a stable current density of7.5mA/cm2for the oxygen evolution reaction in phosphate buffer solution for10h,and a Faradaic efficiency of99%was obtained.展开更多
Copper nitride thin film was deposited on glass substrates by reactive DC (direct current) magnetron sputtering at a 0.5 Pa N2 partial pressure and different substrate temperatures. The as-prepared film, characteriz...Copper nitride thin film was deposited on glass substrates by reactive DC (direct current) magnetron sputtering at a 0.5 Pa N2 partial pressure and different substrate temperatures. The as-prepared film, characterized with X-Ray diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy measurements, showed a composed structure of Cu3N crystallites with anti-ReO3 structure and a slight oxidation of the resulted film.The crystal structure and growth rate of Cu3N films were affected strongly by substrate temperature. The preferred crystalline orientation of Cu3N films were (111) and (200) at RT, 100℃. These peaks decayed at 200℃ and 300℃ only Cu (111) peak was noticed. Growth of Cu3N films at 100℃ is the optimum substrate temperature for producing high-quality (111) Cu3N films. The deposition rate of Cu3N films estimated to be in range of 18-30 nm/min increased while the resistivity and the microhardness of Cu3N films decreased when the temperature of glass substrate increased.展开更多
The deposition of high-quality diamond films and their adhesion on cemented carbides are strongly influenced by the catalytic effect of cobalt under typical deposition conditions. Decreasing Co content on the surface...The deposition of high-quality diamond films and their adhesion on cemented carbides are strongly influenced by the catalytic effect of cobalt under typical deposition conditions. Decreasing Co content on the surface of the cemented carbide is often used for the diamond film deposition. But the leaching of Co from the WC-Co substrate leading to a mechanical weak surface often causes a poor adhesion. In this paper we adopted an implant copper layer prepared by vaporization to improve the mechanical properties of the Co-leached substrate. The diamond films were grown by microwave plasma chemical vapor deposition from CH4:H2 gas mixture. The cross section and the morphology of the diamond film were characterized by scanning electron microscopy (SEM). The non-diamond content in the film was analyzed by Raman spectroscopy. The effects of pretreatment on the concentrations of Co and Cu near the interfacial region were examined by energy dispersive spectrum (EDS) equipped with SEM. The adhesion of the diamond on the substrate was evaluated with a Rockwell-type hardness tester. The results indicate that the diamond films prepared with implant copper layer have a good adhesion to the cemented carbide substrate due to the recovery of the mechanical properties of the Co-depleted substrate after the copper implantation and the formation of less amorphous carbon between the substrate and the diamond film.展开更多
Ti-Cu films with different Cu concentrations were fabricated by high-power pulsed magnetron sputtering(HPPMS) to release copper ions and catalyze NO to improve the blood compatibility. The Cu concentrations of films...Ti-Cu films with different Cu concentrations were fabricated by high-power pulsed magnetron sputtering(HPPMS) to release copper ions and catalyze NO to improve the blood compatibility. The Cu concentrations of films were 25.7 at% and 68.8 at%. Pure Ti films were also fabricated. Copper release, catalytic release of nitric oxide(NO), and blood platelet adhesion of Ti-Cu films were studied. Ti-Cu films released copper ions in PBS solution and more Cu ions were released from films with 68.8 at% Cu. Ti-Cu films had excellent ability of catalytical decomposition of exogenous donor S-nitroso-N-acetyl-DL-penicillamine(SNAP) and as a result, nitric oxide(NO) was generated. The NO generation catalyzed by Ti-Cu films was significantly higher than that by pure Ti films. This was more eminent in the Ti-Cu films with 68.8 at% Cu. The platelet adhesion and activation of Ti-Cu films were significantly inhibited compared to that of pure Ti films in the presence of SNAP. The Ti-Cu film fabricated by HPPMS showed the ability of releasing Cu ions to catalyze SNAP to generate NO to inhibit platelet adhesion and activation.展开更多
Copper nanoparticles with a size of about 150 nm were prepared in toluene using oleic acid as protecting agent. The nanoparticles were used to prepare conductive Cu ink with a polyurethane binder. Oleic acid was used ...Copper nanoparticles with a size of about 150 nm were prepared in toluene using oleic acid as protecting agent. The nanoparticles were used to prepare conductive Cu ink with a polyurethane binder. Oleic acid was used to prevent the nanoparticles from oxidization and agglomeration. The prepared Cu nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The resistivity of the copper film on glass substrate that was prepared using Cu nanoparticle ink reached about 1.5× 10-4 2. cm-1 after it was annealed to 120 ~C. Both the nanoparticle ink and the films were characterized by XRD, fourier transform infrared (FT-IR), and the thermogravimetry-differential scanning calorimetry instrument (TG- DSC).展开更多
We presented a novel method for the development of a latent fingerprint by selective electrodeposition of a copper thin film from sulfate solution onto the conductive substrate between fingerprint ridges to generate a...We presented a novel method for the development of a latent fingerprint by selective electrodeposition of a copper thin film from sulfate solution onto the conductive substrate between fingerprint ridges to generate a negative image of the fingerprint deposit. After optimizing the parameters(deposition time, deposition potential, and copper concentration), the preferential electrodeposition of copper films allowed latent fingerprints on six kinds of conductive surfaces(indium/tin oxide-coated glass, silver sheet, platinum sheet, gold sheet, copper sheet, and a stainless steel coin) to be successfully developed with high resolution. In addition, this technique could also be exploited to visualize latent fingerprints on rough and dirty surfaces. The quality of the developed fingerprints was estimated visually and the morphology of the copper film was characterized by field emission scanning electron microscopy.展开更多
The surface planarity and asperity removal behavior on atomic scale in an ultrathin water environment were studied for a nanoscale process by molecular dynamics simulation.Monolayer atomic removal is achieved under bo...The surface planarity and asperity removal behavior on atomic scale in an ultrathin water environment were studied for a nanoscale process by molecular dynamics simulation.Monolayer atomic removal is achieved under both noncontact and monoatomic layer contact conditions with different water film thicknesses.The newly formed surface is relatively smooth without deformed layers,and no plastic defects are present in the subsurface.The nanoscale processing is governed by the interatomic adhering action during which the water film transmits the loading forces to the Cu surface and thereby results in the migration and removal of the surface atoms.When the scratching depth≥0.5 nm,the abrasive particle squeezes out the water film from the scratching region and scratches the Cu surface directly.This leads to the formation of trenches and ridges,accumulation of chips ahead of the particles,and generation of dislocations within the Cu substrate.This process is mainly governed by the plowing action,leading to the deterioration of the surface quality.This study makes the"0 nm planarity,0 residual defects,and 0 polishing pressure"in a nanoscale process more achievable and is helpful in understanding the nanoscale removal of materials for developing an ultra-precision manufacture technology.展开更多
In a previous paper, we have reported the relationship between the crystallite orientation of the evaporated film of copper phthalacyanine (PcCu) (α-form) and the incident angle of molecular beam at 10-5 torr. In...In a previous paper, we have reported the relationship between the crystallite orientation of the evaporated film of copper phthalacyanine (PcCu) (α-form) and the incident angle of molecular beam at 10-5 torr. In this paper, we shall show some research results about vacuum effects on the crystal forms and the morphology of the evaporat-展开更多
Additive manufacturing or three dimensional(3D)printing is a promising technique for producing complex geometries and high precision structures from various types of materials.The technique was particularly developed ...Additive manufacturing or three dimensional(3D)printing is a promising technique for producing complex geometries and high precision structures from various types of materials.The technique was particularly developed for polymer materials such as acrylonitrile–butadiene–styrene(ABS)and found its way to different industries such as aerospace,automotive,electronics,medicine and construction.However,during service in outdoor environments,3D printed polymer structures are exposed to different environmental conditions such as UV radiation and moisture,causing a significant degradation in the microstructure and mechanical properties of the structures.This study offers a novel method to improve durability of 3D printed polymer structures against accelerated environmental conditions by deposition of a metallic thin film(i.e.copper)on the structural surface.ABS specimens are 3D printed using fused deposition modeling(FDM)technique and metalized via DC magnetron sputtering.The characterization of durability of 3D printed ABS specimens in outdoor environments is carried out by monitoring flexural properties and microstructure of samples over the course of exposure in a controlled environmental chamber.展开更多
基金ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20576112).
文摘A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a precursor. The growth of Cu nucleus on silicon substrates by H2 reduction of Cu(hfac)2 was studied by atomic force microscopy and scanning electron microscopy. The growth mode of Cu nucleus is initially Volmer-Weber mode (island), and then transforms to Stranski-Rastanov mode (layer-by-layer plus island). The mechanism of Cu nucleation on silicon (100) substrates was further investigated by X-ray photoelectron spectroscopy. From Cu2p, O1s, F1s, Si2p patterns, the observed C=O, OH and CF3/CF2 should belong to Cu(hfac) formed by the thermal dissociation of Cu(hfac)2. H2 reacts with hfac on the surface, producing OH. With its accumulation, OH reacts with hfac, forming HO-hfac, and desorbs, meanwhile, the copper oxide is reduced, and thus the redox reaction between Cu(hafc)2 and H2 occurs.
基金supported by the National Natural Sci-ence Foundation of China under grant No. 10574047the Key Program of the Education Branch of Hubei Provinceof China under grant No. D200529002+1 种基金the Key Pro-gram of the Ethnic Affairs Committee of China undergrant No. 08HB05 the Scientific Research Foundation of Nanjing University of Post and Telecommunication un-der grant No. NY208025.
文摘Copper nitride film (Cu3N) and La-doped copper nitride films (LaxCu3N) were prepared on glass substrates by reactive magnetron sputtering of a pure Cu and a pure La targets under N2 atmosphere. The results show that La-free film was composed of Cu3N crystallites with anti-ReO3 structure with (111) texture. The formation of the LaxCu3N films is affected strongly by La, and the peak intensity of the preferred crystalline [111]-orientation decreases with increasing the concentration of La. High concentration of La may prevent the formation of the Cu3N from crystallization. Compared with the Cu3N films, the resistivity of the LaxCu3N films have been decreased.
基金the National Natural Science Foundation of China (No.10574047)the Key Program of the Education Branch of Hubei Province of China (No. D200529002)
文摘Cu3N and Al Cu3N films were prepared with reactive magnetron sputtering method. The two films were deposited on glass substrates at 0.8 Pa N2 partial pressure and 100 ℃ substrate temperature by using a pure Cu and AI target, respectively. X-ray diffraction (XRD) measurements show that the un-doped film was composed of Cu3N crystallites with anti-ReO3 structure and adopted [111] preferred orientation. XRD shows that the growth of Al-doped copper nitride films (AlxCu3N) was affected strongly by doping AI, the intensity of [111] peak decreases with increasing the concentration of Al and the high concentration of Al could prevent the Cu3N from crystallization. AFM shows that the surface of AlCu3N film is smoother than that of Cu3N film. Compared with the Cu3N films, the resistivities of the Al-doped copper nitride films (AlxCu3N) have been reduced, and the microhardness has been enhanced.
文摘The direct deposition of diamond films on copper substrate has been suffered fromadhesion problems due to the mismatch of the thermal expansion coefficients of diamond andcopper. In this paper nuclei with valuable density were directly introduced thirough a submicrondiamond powder layer. The diamond grits partially were buried in the copper substrate leadingto better adhesion. Another method with nickel intermediate layer for enhancing the adhesionwas studied here in detail. It was suggested that Cu-Ni eutectic between the copper substrate andNi interlayer might contribute to the adhesion improvement. The quality of the diamond filmsdeposited wlth rnckel interlayer was investigated by scanning electron microscopy and Ramanspectroscopy.
文摘Langmuir-Blodgett(LB)films of tetra-nonyl phthalocyanine copper (TNPcCu)were prepared.Molecular arrangement and orientation of these films were studied in detail.LB multilayer films of TNPcCu show a very Strong x-ray diffration peak and two weak peaks which indicate that the LB films form a quasi-crystal structure which molecules are arranged orderly.IR reflection absorption spectra and polarized VIS absorption spectra not only confirm the previous result but also indicate that phthalocyanine rings orient nearly perpendicular to the substrate surface and perpendicular to the lifting direction and the side-chain segments are not preferred oriented.
文摘Infrared spectra of alternating LB films of octadecyl-TCNQ/CuPc are studied. Charge-transfer complexes are formed in LB films and conductance increases about three orders than that of pure CuPc LB films.
基金supported by the Russian Foundation for Basic Research(Grant No.13-08-00273)
文摘The process of graphene cleaning of a copper film by bombarding it with Ar_(13) clusters is investigated by the molecular dynamics method.The kinetic energies of the clusters are 5,10,20,and 30 eV and the incident angles are θ= 90°,75°,60°,45°,and 0°.It is obtained that the cluster energy should be in the interval 20 eV-30 eV for effective graphene cleaning.There is no cleaning effect at vertical incidence(θ =0°) of Ar_(13) clusters.The bombardments at 45° and 90° incident angles are the most effective on a moderate and large amount of deposited copper,respectively.
文摘Nanocrystalline copper films were prepared by sputtering and then in situ straining experiments were performed using a trans- mission electron microscope. Macroscopically, these copper films exhibited very low ductility (<l%). Dislocation activity was limited in regions far from propagating cracks. Near stable growing cracks, considerable local plasticity was observed. The evidence of slip ac- tivity both within grain interiors and in grain boundaries was also observed. Although some dislocation; moved very fast, others showed rates much lower than those typically measured for bulk copper. Fracture was intergranular, but not brittle. It occurred by linking of microcracks. Microcracks formed within a micrometer or so ahead of the main crack tip, usually within a grain boundary. Linking then took place by the easiest available path.
基金Project(08520740200)supported by the Applied Materials Research and Development Fund of Shanghai,China
文摘Pure Cu films and Cu alloy films containing insoluble substances(Zr and Cr)were deposited on Si(100)substrates,in the presence of interfacial native suboxide(SiOx),by magnetron sputtering.Samples were vacuum annealed between 300℃and 500 ℃to investigate effects of Zr and Cr additions on the thermal performance of Cu films.After annealing,copper silicides were found in the Cu(Zr)films,while no detectable silicides were observed in Cu and Cu(Cr)films.Upon annealing,Zr accelerated the diffusion and reaction between the film and the substrate,and lowered the thermal stability of Cu(Zr)alloy films on Si substrates,which was ascribed to the‘purifying effect’of Zr on the Si substrates.Whereas,Cr prohibited the agglomeration of Cu films at 500℃and decreased the surface roughness.As a result,the diffusion of Cu in Si substrates for Cu(Cr)films was effectively inhibited.In contrast to the high resistivity of Cu(Zr)films,the final resistivity of about 2.76μΩ·cm was achieved for the Cu(Cr)film.These results indicate that Cu(Cr)films have higher thermal stability than Cu(Zr)films on Si substrates and are preferable in the advanced barrierless Cu metallization.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No. 2004CB619302)the National Natural Science Foundation of China (Grant No. 51071098)
文摘Variation of stress in attached copper film with an applied strain is measured by X-ray diffraction combined with a four-point bending method. A lower slope of the initial elastic segment of the curve of X-ray measured stress versus applied strain results from incomplete elastic strain transferred from the substrate to the film due to insufficiently strong interface cohesion. So the slope of the initial elastic segment of the X-ray stress (or X-ray strain directly) of the film against the substrate applied strain may be used to measure the film-substrate cohesive strength. The yield strength of the attached copper film is much higher than that of the bulk material and varies linearly with the inverse of the film thickness.
文摘Developing highly efficient and stable water oxidation catalysts based on abundant metallic elements is a challenge that must be met to fulfill the promise of water splitting for clean energy production.In this work,we developed an oxygen evolution reaction catalyst consisting of a nanostructured film electrodeposited from a phosphate buffer solution(0.2mol/L,pH=12.0)containing Cu‐tricine complex.A Tafel plot showed that the required overpotential for a current densityof1.0mA/cm2was only395mV and the Tafel slope was46.7mV/decade.In addition,the Cu‐tricine film maintained a stable current density of7.5mA/cm2for the oxygen evolution reaction in phosphate buffer solution for10h,and a Faradaic efficiency of99%was obtained.
文摘Copper nitride thin film was deposited on glass substrates by reactive DC (direct current) magnetron sputtering at a 0.5 Pa N2 partial pressure and different substrate temperatures. The as-prepared film, characterized with X-Ray diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy measurements, showed a composed structure of Cu3N crystallites with anti-ReO3 structure and a slight oxidation of the resulted film.The crystal structure and growth rate of Cu3N films were affected strongly by substrate temperature. The preferred crystalline orientation of Cu3N films were (111) and (200) at RT, 100℃. These peaks decayed at 200℃ and 300℃ only Cu (111) peak was noticed. Growth of Cu3N films at 100℃ is the optimum substrate temperature for producing high-quality (111) Cu3N films. The deposition rate of Cu3N films estimated to be in range of 18-30 nm/min increased while the resistivity and the microhardness of Cu3N films decreased when the temperature of glass substrate increased.
文摘The deposition of high-quality diamond films and their adhesion on cemented carbides are strongly influenced by the catalytic effect of cobalt under typical deposition conditions. Decreasing Co content on the surface of the cemented carbide is often used for the diamond film deposition. But the leaching of Co from the WC-Co substrate leading to a mechanical weak surface often causes a poor adhesion. In this paper we adopted an implant copper layer prepared by vaporization to improve the mechanical properties of the Co-leached substrate. The diamond films were grown by microwave plasma chemical vapor deposition from CH4:H2 gas mixture. The cross section and the morphology of the diamond film were characterized by scanning electron microscopy (SEM). The non-diamond content in the film was analyzed by Raman spectroscopy. The effects of pretreatment on the concentrations of Co and Cu near the interfacial region were examined by energy dispersive spectrum (EDS) equipped with SEM. The adhesion of the diamond on the substrate was evaluated with a Rockwell-type hardness tester. The results indicate that the diamond films prepared with implant copper layer have a good adhesion to the cemented carbide substrate due to the recovery of the mechanical properties of the Co-depleted substrate after the copper implantation and the formation of less amorphous carbon between the substrate and the diamond film.
基金Funded by the National Natural Science Foundation of China(No.31300787)the National Natural Science Foundation of China China Academy of Engineering Physics(NSAF No.U1330113)+1 种基金the Overseas Famous Teacher Program of Chinese Education Ministry(MS2010XNJT070)the Qingmiao Plan of SWJTU 2015(No.A0920502051517-6)
文摘Ti-Cu films with different Cu concentrations were fabricated by high-power pulsed magnetron sputtering(HPPMS) to release copper ions and catalyze NO to improve the blood compatibility. The Cu concentrations of films were 25.7 at% and 68.8 at%. Pure Ti films were also fabricated. Copper release, catalytic release of nitric oxide(NO), and blood platelet adhesion of Ti-Cu films were studied. Ti-Cu films released copper ions in PBS solution and more Cu ions were released from films with 68.8 at% Cu. Ti-Cu films had excellent ability of catalytical decomposition of exogenous donor S-nitroso-N-acetyl-DL-penicillamine(SNAP) and as a result, nitric oxide(NO) was generated. The NO generation catalyzed by Ti-Cu films was significantly higher than that by pure Ti films. This was more eminent in the Ti-Cu films with 68.8 at% Cu. The platelet adhesion and activation of Ti-Cu films were significantly inhibited compared to that of pure Ti films in the presence of SNAP. The Ti-Cu film fabricated by HPPMS showed the ability of releasing Cu ions to catalyze SNAP to generate NO to inhibit platelet adhesion and activation.
基金Funded by the National Natural Science Foundation of China(No.51175394)the Fundamental Research Funds for the Central Universities(No.2013-Ia-031)the Scientific Research Foundation for the Returned Overseas Chinese Scholars(Nos.[2012]1707,[2013]693)
文摘Copper nanoparticles with a size of about 150 nm were prepared in toluene using oleic acid as protecting agent. The nanoparticles were used to prepare conductive Cu ink with a polyurethane binder. Oleic acid was used to prevent the nanoparticles from oxidization and agglomeration. The prepared Cu nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The resistivity of the copper film on glass substrate that was prepared using Cu nanoparticle ink reached about 1.5× 10-4 2. cm-1 after it was annealed to 120 ~C. Both the nanoparticle ink and the films were characterized by XRD, fourier transform infrared (FT-IR), and the thermogravimetry-differential scanning calorimetry instrument (TG- DSC).
基金supported by the National Natural Science Foundation of China(21127007)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China
文摘We presented a novel method for the development of a latent fingerprint by selective electrodeposition of a copper thin film from sulfate solution onto the conductive substrate between fingerprint ridges to generate a negative image of the fingerprint deposit. After optimizing the parameters(deposition time, deposition potential, and copper concentration), the preferential electrodeposition of copper films allowed latent fingerprints on six kinds of conductive surfaces(indium/tin oxide-coated glass, silver sheet, platinum sheet, gold sheet, copper sheet, and a stainless steel coin) to be successfully developed with high resolution. In addition, this technique could also be exploited to visualize latent fingerprints on rough and dirty surfaces. The quality of the developed fingerprints was estimated visually and the morphology of the copper film was characterized by field emission scanning electron microscopy.
基金National Natural Science Foundation of China[Grant numbers 51375364 and 51475359]Natural Science Foundation of Shaanxi Province of China[2014JM6219]。
文摘The surface planarity and asperity removal behavior on atomic scale in an ultrathin water environment were studied for a nanoscale process by molecular dynamics simulation.Monolayer atomic removal is achieved under both noncontact and monoatomic layer contact conditions with different water film thicknesses.The newly formed surface is relatively smooth without deformed layers,and no plastic defects are present in the subsurface.The nanoscale processing is governed by the interatomic adhering action during which the water film transmits the loading forces to the Cu surface and thereby results in the migration and removal of the surface atoms.When the scratching depth≥0.5 nm,the abrasive particle squeezes out the water film from the scratching region and scratches the Cu surface directly.This leads to the formation of trenches and ridges,accumulation of chips ahead of the particles,and generation of dislocations within the Cu substrate.This process is mainly governed by the plowing action,leading to the deterioration of the surface quality.This study makes the"0 nm planarity,0 residual defects,and 0 polishing pressure"in a nanoscale process more achievable and is helpful in understanding the nanoscale removal of materials for developing an ultra-precision manufacture technology.
文摘In a previous paper, we have reported the relationship between the crystallite orientation of the evaporated film of copper phthalacyanine (PcCu) (α-form) and the incident angle of molecular beam at 10-5 torr. In this paper, we shall show some research results about vacuum effects on the crystal forms and the morphology of the evaporat-
基金Provost Office at Mercer University for SEED grant。
文摘Additive manufacturing or three dimensional(3D)printing is a promising technique for producing complex geometries and high precision structures from various types of materials.The technique was particularly developed for polymer materials such as acrylonitrile–butadiene–styrene(ABS)and found its way to different industries such as aerospace,automotive,electronics,medicine and construction.However,during service in outdoor environments,3D printed polymer structures are exposed to different environmental conditions such as UV radiation and moisture,causing a significant degradation in the microstructure and mechanical properties of the structures.This study offers a novel method to improve durability of 3D printed polymer structures against accelerated environmental conditions by deposition of a metallic thin film(i.e.copper)on the structural surface.ABS specimens are 3D printed using fused deposition modeling(FDM)technique and metalized via DC magnetron sputtering.The characterization of durability of 3D printed ABS specimens in outdoor environments is carried out by monitoring flexural properties and microstructure of samples over the course of exposure in a controlled environmental chamber.