The solvent extraction technology, was applied to recover Cu^2+ and Ni^2+ from plating wastewater.Lix984N was chosen as the extractant due to-its gooff extraction performance. The influence parame-ters were examlned...The solvent extraction technology, was applied to recover Cu^2+ and Ni^2+ from plating wastewater.Lix984N was chosen as the extractant due to-its gooff extraction performance. The influence parame-ters were examlned. The results show that the separation of Cu^2+ and Ni" from sulphate medium can be realized by adjusting pH value with the help of Lix984N. For extracting Cu^2+ and Ni^2+, the optimal pH values are 4 and 10.5, and the maximal extraction percentages are 92.9% and 93.0%, respectively .With recovered Cu^2+ and Ni^2+ stripped in 170g.L^ -1 and 200 g.L^-1 H2SO4 medium, the stripping percentages of Cu^2+ and Ni^2+ are 92.9% and 93.0%, respectively. This method is simple and can be used to recover Cu^2+ and Ni^2+ from plating wastewater. And a flow sheet for separation of Cu^2+ and Ni^2+ is presented.展开更多
Copper and arsenic in acidic wastewater were separated by cascade sulfidation followed by replacement of arsenic in theprecipitates by copper in the solution which was realized by recycling precipitates obtained in th...Copper and arsenic in acidic wastewater were separated by cascade sulfidation followed by replacement of arsenic in theprecipitates by copper in the solution which was realized by recycling precipitates obtained in the first stage into the initial solution.The effects of reaction time,temperature and H2S dosage on copper and arsenic removal efficiencies as well as the effects of solid-toliquidratio,time and temperature on the replacement of arsenic by copper were investigated.With20mmol/L H2S at50°C within0.5min,more than80%copper and nearly20%arsenic were precipitated.The separation efficiencies of copper and arsenic werehigher than99%by the replacement reaction between arsenic and copper ions when solid-to-liquid ratio was more than10%at20°Cwithin10min.CuS was the main phases in precipitate in which copper content was63.38%in mass fraction.展开更多
The solid sodium hydroxide neutralized acidic As-containing wastewater till pH value was 6. Green copper arsenite was prepared after copper sulfate was added into the neutralized wastewater when the molar ratio of Cu ...The solid sodium hydroxide neutralized acidic As-containing wastewater till pH value was 6. Green copper arsenite was prepared after copper sulfate was added into the neutralized wastewater when the molar ratio of Cu to As was 2:1 and pH value of the neutralized wastewater was adjusted to 8.0 by sodium hydroxide. The arsenious acid solution and red residue were produced after copper arsenite mixed with water according to the ratio of liquid to solid of 4:1 and copper arsenite was reduced by SO2 at 60℃ for 1 h. The white powder was gained after the arsenious acid solution was evaporated and cooled. Copper sulfate solution was obtained after the red residue was leached by H2SO4 solution under the action of air. The results show that red residue is Cu3(SO3)2·2H2O and the white powder is As2O3. The leaching rate of Cu reaches 99.00% when the leaching time is 1.5 h, molar ratio of H2SO4 to Cu is 1.70, H2SO4 concentration is 24% and the leaching temperature is 80 ℃. The direct recovery rate of copper sulfate is 79.11% and the content of CuSOa·5H2O is up to 98.33% in the product after evaporating and cooling the copper sulfate solution.展开更多
The preparation of granulated adsorption material of water-quenched slag/rectorite composite and the treatment of Cu ( Ⅱ )-containing copper smelter wastewater with the adsorption material were studied. The experim...The preparation of granulated adsorption material of water-quenched slag/rectorite composite and the treatment of Cu ( Ⅱ )-containing copper smelter wastewater with the adsorption material were studied. The experimental results showed that under the conditions with the mass ratio of water-quenched slag to rectorite of 1:1, 10% additive of industrial starch (IS), and 50% water, and a calcination temperature of 400 ℃, the granulated adsorption material prepared had a density of 1.06 kg/m^3, a porosity of 62.29%, water absorption rate of 58.82%, and compressive strength of 2.22 MPa. The efficiency of wastewater treatment was the best, whereas the rate of spallation loss was low. Under the conditions of natural pH, with the addition of the granulated adsorption material of 0.05 g/mL, a reaction time of 40 minutes, and temperature of 25 ℃, the efficiency of the granulated adsorption material for the removal of Cu ( Ⅱ ) ions from the copper smelter wastewater attained 98.2%, and the quality indexes of the wastewater after treatment conformed with the first level of integrated wastewater discharge standard (GB8978-1996). The reclamation of the used granulated adsorption material was carried out by de-sorption of the Cu ( Ⅱ) ions from the surface with 1 mol/L sodium chloride solution. The de-sorption rate was 96.4%, and the adsorption material can be reused many times to treat copper smelter wastewater.展开更多
The coordination structure of cupric tartrate(Cu−TA)complex was investigated by ultraviolet−visible(UV-Vis)and liquid chromatography/mass spectrometer(LC-MS)firstly;furthermore,effective coordination configurations an...The coordination structure of cupric tartrate(Cu−TA)complex was investigated by ultraviolet−visible(UV-Vis)and liquid chromatography/mass spectrometer(LC-MS)firstly;furthermore,effective coordination configurations and electronic properties of Cu−TA in aqueous solution were systematically revealed by density functional theory(DFT)calculations.Consistently,Job plots show the possible existence of[Cu(TA)]and[Cu(TA)_(2)]^(2-)at 230 and 255 nm based on UV-Vis results.LC-MS results confirm the existence of the single and high coordination complexes[Cu_(2)(TA)_(2)]^(+),[Cu(TA)_(2)]^(+)and[Cu_(2)(TA)_(3)(H_(2)O)_(2)(OH)_(2)]^(2+).DFT calculation results show that carboxylic oxygen and hydroxyl oxygen of tartaric acid(TA)are preferred sites for Cu(Ⅱ)coordination.[Cu(TA)](1H,3H sites O of TA coordinated with Cu(Ⅱ)),[Cu(TA)_(2)]^(2-)(two 1^(C),2^(H) sites O of TA coordinated with Cu(Ⅱ)),and[Cu(TA)_(3)]^(4-)(three 2H,3H sites O of TA coordinated with Cu(Ⅱ))should be dominant coordination configurations of Cu−TA.The corresponding Gibbs reaction energies are-170.1,-136.2,and-90.2 kJ/mol,respectively.展开更多
基金Supported by the National Key Technologies Research and Development Program of China during the 1 lth Five-Year Plan Period (2007BAB22B01) and the Young Science Foundation of Jiangxi Province Education Office (GJJ11124).
文摘The solvent extraction technology, was applied to recover Cu^2+ and Ni^2+ from plating wastewater.Lix984N was chosen as the extractant due to-its gooff extraction performance. The influence parame-ters were examlned. The results show that the separation of Cu^2+ and Ni" from sulphate medium can be realized by adjusting pH value with the help of Lix984N. For extracting Cu^2+ and Ni^2+, the optimal pH values are 4 and 10.5, and the maximal extraction percentages are 92.9% and 93.0%, respectively .With recovered Cu^2+ and Ni^2+ stripped in 170g.L^ -1 and 200 g.L^-1 H2SO4 medium, the stripping percentages of Cu^2+ and Ni^2+ are 92.9% and 93.0%, respectively. This method is simple and can be used to recover Cu^2+ and Ni^2+ from plating wastewater. And a flow sheet for separation of Cu^2+ and Ni^2+ is presented.
基金Projects(51304251,51504299)supported by the National Natural Science Foundation of ChinaProject(201509050)+1 种基金supported by Special Program on Environmental Protection for Public Welfare,ChinaProject(k1502037-31)supported by Key Project of Changsha,China
文摘Copper and arsenic in acidic wastewater were separated by cascade sulfidation followed by replacement of arsenic in theprecipitates by copper in the solution which was realized by recycling precipitates obtained in the first stage into the initial solution.The effects of reaction time,temperature and H2S dosage on copper and arsenic removal efficiencies as well as the effects of solid-toliquidratio,time and temperature on the replacement of arsenic by copper were investigated.With20mmol/L H2S at50°C within0.5min,more than80%copper and nearly20%arsenic were precipitated.The separation efficiencies of copper and arsenic werehigher than99%by the replacement reaction between arsenic and copper ions when solid-to-liquid ratio was more than10%at20°Cwithin10min.CuS was the main phases in precipitate in which copper content was63.38%in mass fraction.
文摘The solid sodium hydroxide neutralized acidic As-containing wastewater till pH value was 6. Green copper arsenite was prepared after copper sulfate was added into the neutralized wastewater when the molar ratio of Cu to As was 2:1 and pH value of the neutralized wastewater was adjusted to 8.0 by sodium hydroxide. The arsenious acid solution and red residue were produced after copper arsenite mixed with water according to the ratio of liquid to solid of 4:1 and copper arsenite was reduced by SO2 at 60℃ for 1 h. The white powder was gained after the arsenious acid solution was evaporated and cooled. Copper sulfate solution was obtained after the red residue was leached by H2SO4 solution under the action of air. The results show that red residue is Cu3(SO3)2·2H2O and the white powder is As2O3. The leaching rate of Cu reaches 99.00% when the leaching time is 1.5 h, molar ratio of H2SO4 to Cu is 1.70, H2SO4 concentration is 24% and the leaching temperature is 80 ℃. The direct recovery rate of copper sulfate is 79.11% and the content of CuSOa·5H2O is up to 98.33% in the product after evaporating and cooling the copper sulfate solution.
基金National"973"Plan Research Project(No.2004CB619204)Educational Ministry Scientific and Technological Research Key Project(No.02052)
文摘The preparation of granulated adsorption material of water-quenched slag/rectorite composite and the treatment of Cu ( Ⅱ )-containing copper smelter wastewater with the adsorption material were studied. The experimental results showed that under the conditions with the mass ratio of water-quenched slag to rectorite of 1:1, 10% additive of industrial starch (IS), and 50% water, and a calcination temperature of 400 ℃, the granulated adsorption material prepared had a density of 1.06 kg/m^3, a porosity of 62.29%, water absorption rate of 58.82%, and compressive strength of 2.22 MPa. The efficiency of wastewater treatment was the best, whereas the rate of spallation loss was low. Under the conditions of natural pH, with the addition of the granulated adsorption material of 0.05 g/mL, a reaction time of 40 minutes, and temperature of 25 ℃, the efficiency of the granulated adsorption material for the removal of Cu ( Ⅱ ) ions from the copper smelter wastewater attained 98.2%, and the quality indexes of the wastewater after treatment conformed with the first level of integrated wastewater discharge standard (GB8978-1996). The reclamation of the used granulated adsorption material was carried out by de-sorption of the Cu ( Ⅱ) ions from the surface with 1 mol/L sodium chloride solution. The de-sorption rate was 96.4%, and the adsorption material can be reused many times to treat copper smelter wastewater.
基金the National Key Research and Development Program of China(No.2019YFC0408303)the Natural Science Foundation of Hunan Province,China(No.2021JJ20069)+2 种基金the Changsha Science and Technology Project,China(Nos.kq2106016,kq2009005)Higher Education Discipline Innovation Project(111 Project),China(No.B14034)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2021zzts0887).
文摘The coordination structure of cupric tartrate(Cu−TA)complex was investigated by ultraviolet−visible(UV-Vis)and liquid chromatography/mass spectrometer(LC-MS)firstly;furthermore,effective coordination configurations and electronic properties of Cu−TA in aqueous solution were systematically revealed by density functional theory(DFT)calculations.Consistently,Job plots show the possible existence of[Cu(TA)]and[Cu(TA)_(2)]^(2-)at 230 and 255 nm based on UV-Vis results.LC-MS results confirm the existence of the single and high coordination complexes[Cu_(2)(TA)_(2)]^(+),[Cu(TA)_(2)]^(+)and[Cu_(2)(TA)_(3)(H_(2)O)_(2)(OH)_(2)]^(2+).DFT calculation results show that carboxylic oxygen and hydroxyl oxygen of tartaric acid(TA)are preferred sites for Cu(Ⅱ)coordination.[Cu(TA)](1H,3H sites O of TA coordinated with Cu(Ⅱ)),[Cu(TA)_(2)]^(2-)(two 1^(C),2^(H) sites O of TA coordinated with Cu(Ⅱ)),and[Cu(TA)_(3)]^(4-)(three 2H,3H sites O of TA coordinated with Cu(Ⅱ))should be dominant coordination configurations of Cu−TA.The corresponding Gibbs reaction energies are-170.1,-136.2,and-90.2 kJ/mol,respectively.