A novel fluorescent probe,6-(N,N-dimethylamino)-2-naphthoylacryl acid(ACADAN) was designed and synthesized as a fluorescent sensor for Cu^2+ in aqueous media.Significant amplification of fluorescence signals with...A novel fluorescent probe,6-(N,N-dimethylamino)-2-naphthoylacryl acid(ACADAN) was designed and synthesized as a fluorescent sensor for Cu^2+ in aqueous media.Significant amplification of fluorescence signals without causing any discernible change of maximum fluorescence emission wavelength(λ max) was observed upon the addition of Cu^2+.Importantly,ACADAN is capable of recognizing Cu^2+ selectively in aqueous media in the presence of various biologically relevant metal ions and the prevalent toxic metal ions in the environment with high sensitivity(detection limit was 0.1 μmol/L).展开更多
A novel Ni doped carbon quantum dots(Ni-CQDs)fluorescence probe was synthesized by facile electrolysis of monoatomic Ni dispersed porous carbon(Ni–N–C).The obtained Ni-CQDs showed a high quantum yield of 6.3%with th...A novel Ni doped carbon quantum dots(Ni-CQDs)fluorescence probe was synthesized by facile electrolysis of monoatomic Ni dispersed porous carbon(Ni–N–C).The obtained Ni-CQDs showed a high quantum yield of 6.3%with the strongest excitation and emission peaks of 360 nm and 460 nm,and maintained over 90%of the maximum fluorescence intensity in a wide p H range of 3–12.The metal ions detectability of Ni-CQDs was enhanced by Ni doping and functional groups modification,and the rapid and selective detection of Fe^(3+)and Cu^(2+)ions was achieved with Ni-CQDs through dynamic and static quenching mechanism,respectively.On one hand,the energy band gap of Ni-CQDs was regulated by Ni doping,so that excited electrons in Ni-CQDs were able to transfer to Fe^(3+)easily.On the other hand,the abundant functional groups promoted the generation of static quenching complexation between Cu^(2+)and Ni-CQDs.In metal ions detection,the linear quantitation range of Fe^(3+)and Cu^(2+)were 100–1000μM(R^(2)=0.9955)and 300–900μM(R^(2)=0.9978),respectively.The limits of detection(LOD)were calculated as 10.17 and 7.88μM,respectively.Moreover,the fluorescence quenched by Cu^(2+)could be recovered by EDTA2-due to the destruction of the static quenching complexation.In this way,NiCQDs showed the ability to identify the two metal ions to a certain degree under the condition of Fe^(3+)and Cu^(2+)coexistent.This work paves the way of facile multiple metal ion detection with high sensitivity.展开更多
A novel thermally induced graft polymerization technique was used to modify a polyvinylidene fluoride (PVDF) hollow fibre microfiltration membrane. An artificial neural network (ANN) was applied to optimize the pr...A novel thermally induced graft polymerization technique was used to modify a polyvinylidene fluoride (PVDF) hollow fibre microfiltration membrane. An artificial neural network (ANN) was applied to optimize the prepared condition of the membrane. The optimized dosing of acrylic acid (AA), acrylamide (AM), N, N'- methylenebisacrylamide (NMBA) and potassium persulphate (KSP) designed by ANN was that AA was 40.63 ml/L; AM acted as 6.25 g/L; NMBA was 1.72 g/L and KSP was 1.5 g/L, respectively. The thermal stability of the PVDF modified hollow fibre membrane (PVDF-PAA) was investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) analysis. The polycrystallinity of the PVDF-PAA membrane was evaluated by X-ray diffraction (XRD) analysis. The complex formation of the modified membrane was ascertained by Fourier transform infrared spectroscopy (FTIR). The morphology of the PVDF-PAA membrane was studied by environmental scanning electron microscopy (ESEM). The surface compositions of the membrane were analyzed by X-ray photoelectron spectroscopy (XPS). The adsorption capacity of Cu^2+ ion on the PVDF-PAA hollow fibre membrane was also investigated.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.30672560,81172982)the Accented Project for Natural Scientific Research of Universities in Guangdong Province,China(No.05Z012)
文摘A novel fluorescent probe,6-(N,N-dimethylamino)-2-naphthoylacryl acid(ACADAN) was designed and synthesized as a fluorescent sensor for Cu^2+ in aqueous media.Significant amplification of fluorescence signals without causing any discernible change of maximum fluorescence emission wavelength(λ max) was observed upon the addition of Cu^2+.Importantly,ACADAN is capable of recognizing Cu^2+ selectively in aqueous media in the presence of various biologically relevant metal ions and the prevalent toxic metal ions in the environment with high sensitivity(detection limit was 0.1 μmol/L).
基金the National Natural Science Foundation of China(Nos.21776302 and 21776308)the Science Foundation of China University of Petroleum,Beijing(No.2462020YXZZ033)。
文摘A novel Ni doped carbon quantum dots(Ni-CQDs)fluorescence probe was synthesized by facile electrolysis of monoatomic Ni dispersed porous carbon(Ni–N–C).The obtained Ni-CQDs showed a high quantum yield of 6.3%with the strongest excitation and emission peaks of 360 nm and 460 nm,and maintained over 90%of the maximum fluorescence intensity in a wide p H range of 3–12.The metal ions detectability of Ni-CQDs was enhanced by Ni doping and functional groups modification,and the rapid and selective detection of Fe^(3+)and Cu^(2+)ions was achieved with Ni-CQDs through dynamic and static quenching mechanism,respectively.On one hand,the energy band gap of Ni-CQDs was regulated by Ni doping,so that excited electrons in Ni-CQDs were able to transfer to Fe^(3+)easily.On the other hand,the abundant functional groups promoted the generation of static quenching complexation between Cu^(2+)and Ni-CQDs.In metal ions detection,the linear quantitation range of Fe^(3+)and Cu^(2+)were 100–1000μM(R^(2)=0.9955)and 300–900μM(R^(2)=0.9978),respectively.The limits of detection(LOD)were calculated as 10.17 and 7.88μM,respectively.Moreover,the fluorescence quenched by Cu^(2+)could be recovered by EDTA2-due to the destruction of the static quenching complexation.In this way,NiCQDs showed the ability to identify the two metal ions to a certain degree under the condition of Fe^(3+)and Cu^(2+)coexistent.This work paves the way of facile multiple metal ion detection with high sensitivity.
文摘A novel thermally induced graft polymerization technique was used to modify a polyvinylidene fluoride (PVDF) hollow fibre microfiltration membrane. An artificial neural network (ANN) was applied to optimize the prepared condition of the membrane. The optimized dosing of acrylic acid (AA), acrylamide (AM), N, N'- methylenebisacrylamide (NMBA) and potassium persulphate (KSP) designed by ANN was that AA was 40.63 ml/L; AM acted as 6.25 g/L; NMBA was 1.72 g/L and KSP was 1.5 g/L, respectively. The thermal stability of the PVDF modified hollow fibre membrane (PVDF-PAA) was investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) analysis. The polycrystallinity of the PVDF-PAA membrane was evaluated by X-ray diffraction (XRD) analysis. The complex formation of the modified membrane was ascertained by Fourier transform infrared spectroscopy (FTIR). The morphology of the PVDF-PAA membrane was studied by environmental scanning electron microscopy (ESEM). The surface compositions of the membrane were analyzed by X-ray photoelectron spectroscopy (XPS). The adsorption capacity of Cu^2+ ion on the PVDF-PAA hollow fibre membrane was also investigated.