Cu/SiO2 catalysts prepared by a convenient and efficient method using the urea hydrolysis deposition-precipitation (UHDP) technique have been proposed focusing on the effect of copper loading.The texture,structure a...Cu/SiO2 catalysts prepared by a convenient and efficient method using the urea hydrolysis deposition-precipitation (UHDP) technique have been proposed focusing on the effect of copper loading.The texture,structure and composition are systematically characterized by ICP,FTIR,N 2-physisorption,N2O chemisorption,TPR,XRD and XPS.The formation of copper phyllosilicate is observed in Cu/SiO2 catalyst by adopting UHDP method,and the amount of copper phyllosilicate is related to copper loading.It is found the structure properties and catalytic performance is profoundly affected by the amount of copper phyllosilicate.The excellent catalytic activity is attributed to the synergetic effect between Cu0 and Cu +.DMO conversion and EG selectivity are determined by the amount of Cu0 and Cu+,respectively.The proper copper loading (30 wt%) provides with the highest ratio of Cu + /Cu0,giving rise to the highest EG yield of 95% under the reaction conditions of p=2.0 MPa,T=473 K,H2/DMO=80 and LHSV=1.0h-1.展开更多
Non-thermal plasma(NTP)surface modification technology is a new method to control the surface properties of materials,which has been widely used in the field of environmental protection because of its short action tim...Non-thermal plasma(NTP)surface modification technology is a new method to control the surface properties of materials,which has been widely used in the field of environmental protection because of its short action time,simple process and no pollution.In this study,Cu/ACF(activated carbon fiber loaded with copper)adsorbent was modified with NTP to remove H_(2)S and PH_(3) simultaneously under low temperature and micro-oxygen condition.Meanwhile,the effects of different modified atmosphere(air,N_(2) and NH_(3)),specific energy input(0–13 J/mL)and modification time(0–30 min)on the removal of H_(2)S and PH_(3) were investigated.Performance test results indicated that under the same reaction conditions,the adsorbent modified by NH_(3) plasma with 5 J/mL for 10 min had the best removal effect on H_(2)S and PH_(3).CO_(2) temperature-programmed desorption and X-ray photoelectron spectroscopy(XPS)analyzes showed that NH_(3) plasma modification could introduce amino functional groups on the surface of the adsorbent,and increase the types and number of alkaline sites on the surface.Brunauer-Emmett-Teller and scanning electron microscopy showed that NH_(3) plasma modification did not significantly change the pore size structure of the adsorbent,but more active components were evenly exposed to the surface,thus improving the adsorption performance.In addition,X-ray diffraction and XPS analysis indicated that the consumption of active components(Cu and Cu_(2)O)and the accumulation of sulfate and phosphate on the surface and inner pores of the adsorbent are the main reasons for the deactivation of the adsorbent.展开更多
文摘Cu/SiO2 catalysts prepared by a convenient and efficient method using the urea hydrolysis deposition-precipitation (UHDP) technique have been proposed focusing on the effect of copper loading.The texture,structure and composition are systematically characterized by ICP,FTIR,N 2-physisorption,N2O chemisorption,TPR,XRD and XPS.The formation of copper phyllosilicate is observed in Cu/SiO2 catalyst by adopting UHDP method,and the amount of copper phyllosilicate is related to copper loading.It is found the structure properties and catalytic performance is profoundly affected by the amount of copper phyllosilicate.The excellent catalytic activity is attributed to the synergetic effect between Cu0 and Cu +.DMO conversion and EG selectivity are determined by the amount of Cu0 and Cu+,respectively.The proper copper loading (30 wt%) provides with the highest ratio of Cu + /Cu0,giving rise to the highest EG yield of 95% under the reaction conditions of p=2.0 MPa,T=473 K,H2/DMO=80 and LHSV=1.0h-1.
基金funding for this study received from the Fundamental Research Funds for the National Natural Science Foundation of China(Nos.21876071,51968034,41807373 and 21667015)Science and Technology Program of Yunnan province(No.2019FB069).
文摘Non-thermal plasma(NTP)surface modification technology is a new method to control the surface properties of materials,which has been widely used in the field of environmental protection because of its short action time,simple process and no pollution.In this study,Cu/ACF(activated carbon fiber loaded with copper)adsorbent was modified with NTP to remove H_(2)S and PH_(3) simultaneously under low temperature and micro-oxygen condition.Meanwhile,the effects of different modified atmosphere(air,N_(2) and NH_(3)),specific energy input(0–13 J/mL)and modification time(0–30 min)on the removal of H_(2)S and PH_(3) were investigated.Performance test results indicated that under the same reaction conditions,the adsorbent modified by NH_(3) plasma with 5 J/mL for 10 min had the best removal effect on H_(2)S and PH_(3).CO_(2) temperature-programmed desorption and X-ray photoelectron spectroscopy(XPS)analyzes showed that NH_(3) plasma modification could introduce amino functional groups on the surface of the adsorbent,and increase the types and number of alkaline sites on the surface.Brunauer-Emmett-Teller and scanning electron microscopy showed that NH_(3) plasma modification did not significantly change the pore size structure of the adsorbent,but more active components were evenly exposed to the surface,thus improving the adsorption performance.In addition,X-ray diffraction and XPS analysis indicated that the consumption of active components(Cu and Cu_(2)O)and the accumulation of sulfate and phosphate on the surface and inner pores of the adsorbent are the main reasons for the deactivation of the adsorbent.