Oily water treatment has attracted the attention of many researchers. The development of effective and cheap oil/water separation materials is urgent for treating this problem. Herein, inspired by superhydrophobic typ...Oily water treatment has attracted the attention of many researchers. The development of effective and cheap oil/water separation materials is urgent for treating this problem. Herein, inspired by superhydrophobic typical plant leaves such as lotus, red rose and marigold, superhydrophobic and superoleophilic copper mesh was fabricated by etching and then surface modi- fication with 1-dodecanethiol (HS(CH2)IlCH3). A rough silver layer is formed on the mesh surface after immersion. The ob- tained mesh surface exhibits superhydrophobicity and superoleophilicity and the static water contact angle was 153~ + 3~. In addition, the as-prepared copper mesh shows self-cleaning character with water and chemical stability. The as-prepared copper foam can easily remove the organic solvents either on water or underwater. We demonstrate that by using the as-prepared mesh, oils can be absorbed and separated, and that high separation efficiencies of larger than 92% are retained for various oils. Thus, such superhydrophobic and superoleophilic copper mesh is a very promising material for the application ofoil spill cleanup and industrial oily wastewater treatment.展开更多
Reckless discharge of industrial wastewater and domestic sewage as well as frequent leakage of crude oil have caused serious environmental problems and posed severe threat to human survival.Various nature inspired sup...Reckless discharge of industrial wastewater and domestic sewage as well as frequent leakage of crude oil have caused serious environmental problems and posed severe threat to human survival.Various nature inspired superhy-drophobic surfaces have been successfully applied in oily water remediation.However,further improvements are still urgently needed for practical application in terms of facile synthesis process and long-term durability towards harsh environment.Herein,we propose a simple one-step dodecyl mercaptan functionalization method to fabricate Super-hydrophobic-Superoleophilic Copper Mesh(SSCM).The prepared SSCM possesses excellent water repellence and oil affinity,enabling it to successfully separate various oil-water mixtures with high separation efficiency(e.g.,>99%for hexadecane-water mixture).The SSCM retains high separating ability when hot water and strong corrosive aqueous solutions are used to simulate oil-water mixtures,indicating remarkable chemical durability of the dodecyl mercaptan functionalized copper mesh.Additionally,the efficiency can be well maintained during 50 cycles of separation,and the water repellence is even stable after storage in air for 120 days,demonstrating the reusability and long-term stability of the SSCM.Furthermore,the functionalized mesh also shows good mechanical robustness towards abrasion by sandpaper,and oil-water separation efficiency of>96%can be obtained after 10 cycles of abrasion.The reported one-step dodecyl mercaptan functionalization could be a simple method for increasing the water repellence of copper mesh,and thereby be a great candidate for treating large-scale oily wastewater in harsh environments.展开更多
基金The authors thank the National Natural Science Foundation of China (Nos. 51475200 and 51325501), Science and Technology Development Project of Jilin Province (No.20160204005SF and 20150519007JH) and 111 project (B16020) of China.
文摘Oily water treatment has attracted the attention of many researchers. The development of effective and cheap oil/water separation materials is urgent for treating this problem. Herein, inspired by superhydrophobic typical plant leaves such as lotus, red rose and marigold, superhydrophobic and superoleophilic copper mesh was fabricated by etching and then surface modi- fication with 1-dodecanethiol (HS(CH2)IlCH3). A rough silver layer is formed on the mesh surface after immersion. The ob- tained mesh surface exhibits superhydrophobicity and superoleophilicity and the static water contact angle was 153~ + 3~. In addition, the as-prepared copper mesh shows self-cleaning character with water and chemical stability. The as-prepared copper foam can easily remove the organic solvents either on water or underwater. We demonstrate that by using the as-prepared mesh, oils can be absorbed and separated, and that high separation efficiencies of larger than 92% are retained for various oils. Thus, such superhydrophobic and superoleophilic copper mesh is a very promising material for the application ofoil spill cleanup and industrial oily wastewater treatment.
基金This paper was financially supported by National Postdoctoral Program for Innovative Talents(No.BX20190233)China Postdoctoral Science Foundation(No.2019M661012),Tianjin Natural Science Foundation(No.19JCQNJC03900)Research Development Foundation of Tianjin University of Technology and Education(No.KYQD202013).
文摘Reckless discharge of industrial wastewater and domestic sewage as well as frequent leakage of crude oil have caused serious environmental problems and posed severe threat to human survival.Various nature inspired superhy-drophobic surfaces have been successfully applied in oily water remediation.However,further improvements are still urgently needed for practical application in terms of facile synthesis process and long-term durability towards harsh environment.Herein,we propose a simple one-step dodecyl mercaptan functionalization method to fabricate Super-hydrophobic-Superoleophilic Copper Mesh(SSCM).The prepared SSCM possesses excellent water repellence and oil affinity,enabling it to successfully separate various oil-water mixtures with high separation efficiency(e.g.,>99%for hexadecane-water mixture).The SSCM retains high separating ability when hot water and strong corrosive aqueous solutions are used to simulate oil-water mixtures,indicating remarkable chemical durability of the dodecyl mercaptan functionalized copper mesh.Additionally,the efficiency can be well maintained during 50 cycles of separation,and the water repellence is even stable after storage in air for 120 days,demonstrating the reusability and long-term stability of the SSCM.Furthermore,the functionalized mesh also shows good mechanical robustness towards abrasion by sandpaper,and oil-water separation efficiency of>96%can be obtained after 10 cycles of abrasion.The reported one-step dodecyl mercaptan functionalization could be a simple method for increasing the water repellence of copper mesh,and thereby be a great candidate for treating large-scale oily wastewater in harsh environments.