Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The...Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The experimental results show that the particle size distribution obeys two separate systems in the whole wedge-cast sample. Furthermore, it is found that the big clusters are pushed to the center of the wedge shaped sample and the single particle or small clusters consisting of few particles are engulfed into the α-Al in the area of the sample edge. The cluster degree of particles varies in different areas, and its value is 0.2 and 0.6 for the cluster fraction in the edge and in the center of the wedge sample, respectively. The cluster diameter does not obey the normal distribution but approximately obeys lognormal distribution in the present work. More importantly, in the whole sample, the particle size obeys two separate log-normal distributions.展开更多
The bulk nanocomposite magnets of Nd9Fes1-xTi4C2Nb4Bx (x= 11, 13, 15) in sheet form with the thickness of 0.7 mm were prepared by copper mold suction casting and subsequently annealing. The microstructure evolution ...The bulk nanocomposite magnets of Nd9Fes1-xTi4C2Nb4Bx (x= 11, 13, 15) in sheet form with the thickness of 0.7 mm were prepared by copper mold suction casting and subsequently annealing. The microstructure evolution and magnetic properties of bulk magnets were studied. It was shown that the as-cast microstmcture ofbtflk alloys were composed ofNdEFe14B, a-Fe, FeaB crystalline phases and an amorphous matrix, and that the glass formability of alloy was improved with increasing the B content. The DSC analysis showed that the as-cast bulk alloys had the crystallization behavior of a two-step process. After annealing at the temperatures which was 40453 K higher than their onset temperatures of the second exothermic peak, Nd9Fe81 xTi4C2Nb4Bx (x=11, 13, 15) bulk alloys obtained a finely mixed structure which were composed of Nd2Fe14B, a-Fe, Fe3B, (Nb,Ti)C crystalline phases and a residual amorphous phase, whose magnetic properties were significantly enhanced. For the bulk magnets of Nd9Fes1-xTi4CENb4Bx (x=11, 13, 15), the optimal magnetic properties of Br=0.63 T, iHc= 155.1 kA/m, (BH)max= 18.73 kJ/m3 could be achieved when x= 13 after annealing at 983 K for 10 min.展开更多
Metallic glasses represent an interesting group of materials as they possess outstanding physical, chemical and mechanical properties compared to their crystalline counterparts.Currently, with well designed compositio...Metallic glasses represent an interesting group of materials as they possess outstanding physical, chemical and mechanical properties compared to their crystalline counterparts.Currently, with well designed compositions it is possible to cast liquid alloys into the glassy state at low critical cooling rates from 100 K·s-1 to 1 K·s-1 and in large critical sample sizes up to several centimeters, which significantly enhances the promise for possible applications as advanced engineering materials.This paper reviews the development of (ZrCu)-based bulk metallic glasses with large sizes by copper mold casting and their unique properties.Additionally, the ex-situ and in-situ second phases reinforced BMG composites with large plasticity are also presented.展开更多
Many amorphous alloys have been developed to date,but the low plasticity has limited their application.To achieve an amorphous alloy with high plasticity,a series of(Ti_(40)Zr_(25)Cu_(9)Ni_(8) Be_(18))_(100-x)TM_(x)(x...Many amorphous alloys have been developed to date,but the low plasticity has limited their application.To achieve an amorphous alloy with high plasticity,a series of(Ti_(40)Zr_(25)Cu_(9)Ni_(8) Be_(18))_(100-x)TM_(x)(x=0,1,2,3,4 at.%,TM=Nb,Y)alloys were designed to study the influence of Nb and Y addition on the plasticity.The amorphous samples were prepared using the vacuum melting and copper mold casting process.The microstructures,glass forming ability and mechanical properties of the alloys were investigated by X-ray diffractometry(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),depth-sensitive nanoindentation,and uniaxial compressive test.The plasticity of different bulk amorphous alloys was investigated by measuring the plastic deformation energy(PDE)during loading.The relationship between the PDE value and plasticity in bulk amorphous alloys was explored.Results show that Nb addition decreases the PDE value and promotes the generation of multiple shear bands,which significantly increases the fracture strength and plasticity,while the addition of Y element reduces the fracture strength and plastic strain of the alloy.展开更多
To improve the mechanical properties of AZ91D magnesium alloy,the submicrocrystal Al-Ti-B master alloy was prepared with copper mold inject casting method,and the influence of submicrocrystal Al-Ti-B master alloy on t...To improve the mechanical properties of AZ91D magnesium alloy,the submicrocrystal Al-Ti-B master alloy was prepared with copper mold inject casting method,and the influence of submicrocrystal Al-Ti-B master alloy on the microstructure and mechanical properties of AZ91D was investigated.Results show that,the distribution of Ti B_2 phase in submicrocrystal Al-Ti-B alloy is even and disperse,and the average size of Ti Al_3 phase is reduced from 10-30μm to~1μm.The properties of AZ91D refined with submicrocrystal Al-Ti-B master alloy are better than that with coarse-grained Al-Ti-B master alloy without copper mold inject casting.The tensile strength,elongation and Brinell hardness of AZ91D are increased by 10.6%,25%and 18.1%,respectively.Therefore,refinement of AZ91D with submicrocrystal Al-Ti-B that is obtained by copper mold inject casting is an effective method to improve its mechanical properties.展开更多
Bulk amorphous crystal and microcrystal for Pr60Cu(20-x)Ni10Al10Fex (x = 0, 8, 15, 20) with the diameter ofΦ2 ~ 6 mm were manufactured by electric arc smelting, high frequency heating and copper mold upper suction ca...Bulk amorphous crystal and microcrystal for Pr60Cu(20-x)Ni10Al10Fex (x = 0, 8, 15, 20) with the diameter ofΦ2 ~ 6 mm were manufactured by electric arc smelting, high frequency heating and copper mold upper suction casting, and its structure was analyzed by X-ray diffract meter. It showed soft magnetic characteristic gradually when Fe content in it was up to 8% . The material was applied to magnetic-electric sensor as key component, output signal of which was measured with the change of Fe content. It shows that the signal changes from weak to strong with the increase of Fe content and presents the largest peak value when Fe is replaced by Cu completely.展开更多
文摘Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The experimental results show that the particle size distribution obeys two separate systems in the whole wedge-cast sample. Furthermore, it is found that the big clusters are pushed to the center of the wedge shaped sample and the single particle or small clusters consisting of few particles are engulfed into the α-Al in the area of the sample edge. The cluster degree of particles varies in different areas, and its value is 0.2 and 0.6 for the cluster fraction in the edge and in the center of the wedge sample, respectively. The cluster diameter does not obey the normal distribution but approximately obeys lognormal distribution in the present work. More importantly, in the whole sample, the particle size obeys two separate log-normal distributions.
基金Project supported by National Natural Science Foundation of China(51174121)Zhejiang Province Science and Technology Innovation Team of Key Projects(2010R50016-30)
文摘The bulk nanocomposite magnets of Nd9Fes1-xTi4C2Nb4Bx (x= 11, 13, 15) in sheet form with the thickness of 0.7 mm were prepared by copper mold suction casting and subsequently annealing. The microstructure evolution and magnetic properties of bulk magnets were studied. It was shown that the as-cast microstmcture ofbtflk alloys were composed ofNdEFe14B, a-Fe, FeaB crystalline phases and an amorphous matrix, and that the glass formability of alloy was improved with increasing the B content. The DSC analysis showed that the as-cast bulk alloys had the crystallization behavior of a two-step process. After annealing at the temperatures which was 40453 K higher than their onset temperatures of the second exothermic peak, Nd9Fe81 xTi4C2Nb4Bx (x=11, 13, 15) bulk alloys obtained a finely mixed structure which were composed of Nd2Fe14B, a-Fe, Fe3B, (Nb,Ti)C crystalline phases and a residual amorphous phase, whose magnetic properties were significantly enhanced. For the bulk magnets of Nd9Fes1-xTi4CENb4Bx (x=11, 13, 15), the optimal magnetic properties of Br=0.63 T, iHc= 155.1 kA/m, (BH)max= 18.73 kJ/m3 could be achieved when x= 13 after annealing at 983 K for 10 min.
文摘Metallic glasses represent an interesting group of materials as they possess outstanding physical, chemical and mechanical properties compared to their crystalline counterparts.Currently, with well designed compositions it is possible to cast liquid alloys into the glassy state at low critical cooling rates from 100 K·s-1 to 1 K·s-1 and in large critical sample sizes up to several centimeters, which significantly enhances the promise for possible applications as advanced engineering materials.This paper reviews the development of (ZrCu)-based bulk metallic glasses with large sizes by copper mold casting and their unique properties.Additionally, the ex-situ and in-situ second phases reinforced BMG composites with large plasticity are also presented.
基金supported by the National Natural Science Foundation of China(Grant Nos.:51434008,51671166,51471143)。
文摘Many amorphous alloys have been developed to date,but the low plasticity has limited their application.To achieve an amorphous alloy with high plasticity,a series of(Ti_(40)Zr_(25)Cu_(9)Ni_(8) Be_(18))_(100-x)TM_(x)(x=0,1,2,3,4 at.%,TM=Nb,Y)alloys were designed to study the influence of Nb and Y addition on the plasticity.The amorphous samples were prepared using the vacuum melting and copper mold casting process.The microstructures,glass forming ability and mechanical properties of the alloys were investigated by X-ray diffractometry(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),depth-sensitive nanoindentation,and uniaxial compressive test.The plasticity of different bulk amorphous alloys was investigated by measuring the plastic deformation energy(PDE)during loading.The relationship between the PDE value and plasticity in bulk amorphous alloys was explored.Results show that Nb addition decreases the PDE value and promotes the generation of multiple shear bands,which significantly increases the fracture strength and plasticity,while the addition of Y element reduces the fracture strength and plastic strain of the alloy.
基金financially supported by the Science and Technology Research Project for Colleges and Universities of Hebei Province(ZD2014040)the Natural Science Foundation of Hebei Province(E2016202406)
文摘To improve the mechanical properties of AZ91D magnesium alloy,the submicrocrystal Al-Ti-B master alloy was prepared with copper mold inject casting method,and the influence of submicrocrystal Al-Ti-B master alloy on the microstructure and mechanical properties of AZ91D was investigated.Results show that,the distribution of Ti B_2 phase in submicrocrystal Al-Ti-B alloy is even and disperse,and the average size of Ti Al_3 phase is reduced from 10-30μm to~1μm.The properties of AZ91D refined with submicrocrystal Al-Ti-B master alloy are better than that with coarse-grained Al-Ti-B master alloy without copper mold inject casting.The tensile strength,elongation and Brinell hardness of AZ91D are increased by 10.6%,25%and 18.1%,respectively.Therefore,refinement of AZ91D with submicrocrystal Al-Ti-B that is obtained by copper mold inject casting is an effective method to improve its mechanical properties.
文摘Bulk amorphous crystal and microcrystal for Pr60Cu(20-x)Ni10Al10Fex (x = 0, 8, 15, 20) with the diameter ofΦ2 ~ 6 mm were manufactured by electric arc smelting, high frequency heating and copper mold upper suction casting, and its structure was analyzed by X-ray diffract meter. It showed soft magnetic characteristic gradually when Fe content in it was up to 8% . The material was applied to magnetic-electric sensor as key component, output signal of which was measured with the change of Fe content. It shows that the signal changes from weak to strong with the increase of Fe content and presents the largest peak value when Fe is replaced by Cu completely.