期刊文献+
共找到281篇文章
< 1 2 15 >
每页显示 20 50 100
Effect of Ceria on Structure and Thermostability of Copper-Iron-Oxide Catalyst
1
作者 卢冠忠 王幸宜 +1 位作者 王筠松 汪仁 《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第3期190-195,共6页
The solid structures and thermostabilities of Cu-Fe-O and Cu-Fe-Ce-O supported on alumina were studied by XRD, ESR, Mossbauer and TPR techniques. The studies indicate that there are Fe2CuO4, CuO and alpha-Fe2O3 phases... The solid structures and thermostabilities of Cu-Fe-O and Cu-Fe-Ce-O supported on alumina were studied by XRD, ESR, Mossbauer and TPR techniques. The studies indicate that there are Fe2CuO4, CuO and alpha-Fe2O3 phases in Cu-Fe-O with the granula of less than 13 nm. With the catalyst pretreatment temperature rising, the crystallite of Fe2CuO4 in the catalysts grows up and that of CuO disappears gradually. The presence of Ce leads to the increase of Cu2+ concentration, inhibits the crystal growth of CuO and Fe2CuO4 in the catalyst except that of Fe2O3, and eliminates the difference for reductive reaction of oxygen in Fe-O and Cu-O. At 800 degrees C, the crystal growth of Fe2O3 in Cu-Fe-Ce-O is slower than that in Cu-Fe-O, i.e., CeO2 in Cu-Fe-Ce-O inhibits the growth of Fe2O3 phase effectively, and enhances the thermostability of catalysts so as to avoid the sintering of active elements in catalysts. CeO2 promotes the reducibility of catalysts at lower temperature. 展开更多
关键词 rare earths CERIA copper-iron-oxide catalyst thermostability
下载PDF
Roles of Ceria on Base Metal Oxide Catalysts——NO+CO Reaction 被引量:1
2
作者 卢冠忠 汪仁 《Journal of Rare Earths》 SCIE EI CAS CSCD 1992年第2期102-107,共6页
A microreactor system was used to study the catalytic reaction of NO+CO→1/2 N_2+CO_2 over Cu,Fe, Mn,Cr,and Ce oxides supported on alumina,and the effect of adding Ce in supported Cu-M-O(M=Mn,Fe and Cr) catalysts on t... A microreactor system was used to study the catalytic reaction of NO+CO→1/2 N_2+CO_2 over Cu,Fe, Mn,Cr,and Ce oxides supported on alumina,and the effect of adding Ce in supported Cu-M-O(M=Mn,Fe and Cr) catalysts on their catalytic activities for the topic reaction and the concentration of N_2O produced.It was found that the catalytic activity order of the single-element oxide is:CuO>Fe_2O_3≈Cr_2O_3> MnO_2>CeO_2>NiO.Cu-Mn-O is more active than CuO,and Cu-Fe-O is more active than Cu-Mn-O and Cu-Cr-O for NO+CO reaction.This study shows that the addition of Ce in supported Cu-M-O can promote their catalytic activities Jot the topic reaction,which makes the reaction of 2NO+CO→N_2O+CO_2 fast,and N_2O is an intermediate compound produced during NO+CO reaction. 展开更多
关键词 Cerium oxide copper oxide catalyst Redox reaction Carbon monoxide Nitrogen oxide Manganese oxidemm Iron oxide Chromium oxide
下载PDF
Oxidation of Carbon Monoxide over Cu/CeO_2 Catalysts Prepared by SMAI
3
作者 Wei Ping HUANG Xiu Cheng ZHENG +4 位作者 Shou Min ZHANG Xiao Hang QIU Wei WEI Bao Qing LI Shi Hua WU 《Chinese Chemical Letters》 SCIE CAS CSCD 2001年第12期1119-1122,共4页
Supported Cu catalysts for low-temperature CO oxidation were prepared by solvated metal atom impregnation (SMAI). X-ray photoelectron spectroscopy (XPS) investigations indicated that the copper in all the samples was... Supported Cu catalysts for low-temperature CO oxidation were prepared by solvated metal atom impregnation (SMAI). X-ray photoelectron spectroscopy (XPS) investigations indicated that the copper in all the samples was in a metallic state. XRD measurements showed that the mean diameters of Cu particles prepared by SMAI were small. Catalytical tests showed that the SMAI catalyst had high CO oxidation activity. 展开更多
关键词 CO oxidation copper catalysts solvated metal atom impregnation conventional im-pregnation .
下载PDF
Homogeneous Oxidative Coupling Catalysts: Reactivity of [(Pyr)nCuX]4O2 with Carbon Dioxide to Generate New Active Initiators [(Pyr)nCuX]4(CO3)2 (n = 1 or 2, X = Cl, Br or I, Pyr = Pyrrolidine)
4
作者 Mohamed A. EI-Sayed Ahmed H. Abdel-Salam +1 位作者 Hisham A. Abo-EI-Dahab Heba M. Refaat 《Journal of Chemistry and Chemical Engineering》 2012年第1期74-83,共10页
This paper represents the interaction of well characterized Lewis base [(Pyr)nCuX]4O2, n = 1 or 2, X = Cl, Br or I, Pyr = pyrrolidine with CO2 as a Lewis acid to produce new series of oxidative coupling and catechol... This paper represents the interaction of well characterized Lewis base [(Pyr)nCuX]4O2, n = 1 or 2, X = Cl, Br or I, Pyr = pyrrolidine with CO2 as a Lewis acid to produce new series of oxidative coupling and catechol oxidase initiators [(Pyr)nCuX]4(CO3)2. These carbonato derivatives are isolated as stable solids. They are easily soluble in aprotic solvents as CH2Cl2 or PhNO2. Cryoscopic measurements support tetranuclear core structure for all of them. Infrared spectra show differences from their oxo analogous in the carbonato domains but those differences did not distinguish between tridentate bridging carbonato and bidentate one. Rate of oxidation of 2,6-dimethylphenol (DMP) by [(Pyr)CuCl]4(CO3)2, supports coordination number six for Cu(Ⅱ) centers in [(Pyr)CuCl]4(CO3)2. In order to fulfill coordination number six, for n = 1, carbonate will act as tridentate while for n = 2, it will act as bidentate, as shown in Scheme 4. Near infrared spectra indicate a [(3 halo) Cu(Ⅱ) charge transfer] for [(Pyr)nCuX]4(CO3)2, n = 1 or 2, X = Cl or Br. Low molecular absorptivities of the maxima at 825 nm and 730 nm for [(Pyr)nCuI]4(CO3)2, n = 1 or 2 with a minimum of high molecular absorptivities at 600 nm, comparing to X= CI or Br analogous, support a step structure for [(Pyr),Cul]4(CO3)2, as shown in Scheme 5. Cyclic voltammograms for [(Pyr)nCuX]4(CO3)2; n = 1 or 2, X = CI or Br, are irreversible in characters. 展开更多
关键词 Tetranuclear carbonato copper (Ⅱ) homogeneous oxidative coupling catalysts.
下载PDF
Insights into facet-dependent reactivity of CuO–CeO2 nanocubes and nanorods as catalysts for CO oxidation reaction 被引量:9
5
作者 Yu Aung May Wei-Wei Wang +2 位作者 Han Yan Shuai Wei Chun-Jiang Jia 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第6期1017-1027,共11页
Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2... Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2 crystal surfaces on the catalytic activity of Cu O–CeO2 for the oxidation of CO is still unclear and should be further elucidated. In this study, we deposited 1 wt% Cu on mostly {100}-exposed CeO2 nanocubes(1 Cu Ce NC) and mostly {110}-exposed CeO2 nanorods(1 Cu Ce NR), respectively. Both 1 Cu Ce NC and 1 Cu Ce NR have been used as catalysts for the oxidation of CO and achieved 100% and 50% CO conversion at 130 ℃, respectively. The differences in the catalytic activity of 1 Cu Ce NC and 1 Cu Ce NR were analyzed using temperature-programmed reduction of H2 and temperature-programmed desorption of CO techniques. The results confirmed the excellent reducibility of the 1 Cu Ce NC catalyst, which was attributed to the weak interactions between Cu and the CeO2 support. Moreover, in situ diffuse reflectance infrared Fourier-transform spectroscopy studies indicated that the {100} planes of 1 Cu Ce NC facilitated the generation of active Cu(I) sites, which resulted in the formation of highly reactive Cu(I)-CO species during the oxidation of CO. Both the excellent redox properties and effective CO adsorption capacity of the 1 Cu Ce NC catalyst increased its catalytic reactivity. 展开更多
关键词 copper–ceria catalyst Crystal facets CO oxidation Redox property Active site
下载PDF
Gas-phase epoxidation of propylene by molecular oxygen over Ag-Cu-Cl/BaCO_3 catalyst:Effects of Cu and Cl loadings 被引量:2
6
作者 Qing Zhang Yanglong Guo +4 位作者 Wangcheng Zhan Yun Guo Li Wang Yunsong Wang Guanzhong Lu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第1期65-72,共8页
Ag‐Cu‐Cl/BaCO3 catalysts with different Cl and Cu loadings, prepared by the reduction deposition impregnation method, were investigated for gas‐phase epoxidation of propylene by molecular oxygen and characterized b... Ag‐Cu‐Cl/BaCO3 catalysts with different Cl and Cu loadings, prepared by the reduction deposition impregnation method, were investigated for gas‐phase epoxidation of propylene by molecular oxygen and characterized by X‐ray diffraction, X‐ray photoelectron spectroscopy and O2 temperatureprogrammed desorption. Ag‐Cu‐Cl/BaCO3 catalyst with 0.036 wt% Cu and 0.060 wt% Cl exhibitedthe highest catalytic performance for gas‐phase epoxidation of propylene by molecular oxygen. Apropylene oxide selectivity of 83.7% and propylene conversion of 1.2% were achieved under thereaction conditions of 20% C3H6‐10% O2‐70% N2, 200 °C, 0.1 MPa and 3000 h?1. Increasing the Clloading allowed Ag to ensemble easier, whereas changing the Cu loading showed little effect on Agcrystallite size. The appropriate Cl loading of Ag‐Cu‐Cl/BaCO3 catalyst can reduce the dissociationadsorption of oxygen to atomic oxygen species leading to the combustion of propylene to CO2, whichbenefits epoxidation of propylene by molecular oxygen. Excessive Cl loading of Ag‐Cu‐Cl/BaCO3catalyst decreases propylene conversion and propylene oxide selectivity remarkably because of Clpoisoning. The appropriate Cu loading of Ag‐Cu‐Cl/BaCO3 catalyst is efficient for the epoxidation ofpropylene by molecular oxygen, and an excess Cu loading decreases propylene oxide selectivitybecause the aggregation of Cu species increases the exposed surfaces of Ag nanoparticles, whichwas shown by slight increases in atomic oxygen species adsorbed. The appropriate loadings of Cu and Cl of Ag‐Cu‐Cl/BaCO3 catalyst are important to strike the balance between molecular oxygen and atomic oxygen species to create a favorable epoxidation of propylene by molecular oxygen. 展开更多
关键词 Epoxidation of propylene Propylene oxide Molecular oxygen Ag‐based catalyst copper CHLORINE
下载PDF
Preparation of Cerium Doped Cu/MIL-53(A1) Catalyst and Its Catalytic Activity in CO Oxidation Reaction 被引量:1
7
作者 谭海燕 ZHOU Yin +5 位作者 YAN Yunfan 胡卫兵 SHI Xinyu TAN Zhidou TIAN Li ZHENG Yin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期23-28,共6页
Metal-organic framework(MOF) material MIL-53(A1) with high thermal stability was prepared by a solvothermal method,serving as a support material of cerium doped copper catalyst(Ce-Cu)/MIL-53(A1) material for C... Metal-organic framework(MOF) material MIL-53(A1) with high thermal stability was prepared by a solvothermal method,serving as a support material of cerium doped copper catalyst(Ce-Cu)/MIL-53(A1) material for CO oxidation with high catalytic activity.The catalytic performance between the(CuCe)/MIL-53(A1) and the Cu/MIL-53(A1) catalytic material was compared to understand the catalytic behavior of the catalysts.The catalysts were characterized by thermogravimetric-differential scanning calorimetry(TGDSC),N2 adsorption- desorption,X-ray diffraction(XRD),and transmission electron microscopy(TEM).The characterization results showed that MIL-53(A1) had good stability and high surface areas,the(Ce-Cu)nanoparticles on the MIL-53(A1) support was uniform.Therefore,the heterogeneous catalytic composite materials(Ce-Cu)/MIL-53(A1) catalyst exhibited much higher activity than that of the Cu/MIL- 53(A1) catalyst in CO oxidation test,with 100%conversion at 80 ℃.The results reveal that(Cu-Ce)/MIL-53(A1) is the suitable candidate for achieving low temperature and higher activity CO oxidation catalyst of MOFs. 展开更多
关键词 metal-organic framework solvothermal synthesis MIL-53(Al) cerium doped copper catalyst CO catalytic oxidation
下载PDF
Effect of Oxide Assisted Metal Nanoparticles on Microstructure and Morphology of Gallium oxide Nanowires 被引量:1
8
作者 Kyo-Hong CHOI Kwon-Koo CHO +3 位作者 Gyu-Bong CHO Hyo-Jun AHN Ki-Won KIM Yoo-Young KIM 《材料科学与工程学报》 CAS CSCD 北大核心 2007年第6期886-891,共6页
Several researches have been reported about the characteristic of β-Ga_2O_3 nanowires which was synthesized on nickel oxide particle.But indeed,recent researches about synthesis of β-Ga_2O_3 nanowires on oxide-assis... Several researches have been reported about the characteristic of β-Ga_2O_3 nanowires which was synthesized on nickel oxide particle.But indeed,recent researches about synthesis of β-Ga_2O_3 nanowires on oxide-assisted transition metal are limited to nickel or cobalt oxide catalyst.In this work,Gallium oxide(β-Ga_2O_3)nanowires were synthesized by a simple thermal evaporation method from gallium powder in the range of 700-1000℃ using the iron,nickel,copper,cobalt and zinc oxide as a catalyst,respectively.The β-Ga_2O_3 nanowires with single crystalline without defects were successfully synthesized at the reaction temperature of 850,900 and 950℃ in all the catalysts.But optimum experimental condition in synthesis of nanowires varied with the kind of catalyst.As increasing synthesis temperature,the morphology of gallium oxide nanowires changed from nanowires to nanorods,and its diameter increased.From these results,we could be proposed that the growth mechanism of β-Ga_2O_3 nanowires was changed with synthesis temperature of nanowires.Microstructure and morphology of Synthesized nanowire was characterized by HR-TEM,FE-SEM,EDX and XRD. 展开更多
关键词 金属纳米粒子 显微结构 镓氧化物 形态学
下载PDF
A Density Functional Study for the Reaction Mechanism of CO Oxidation on the Copper Cluster
9
作者 周胜华 俞炜铃 +3 位作者 张静 李奕 章永凡 陈文凯 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2018年第9期1379-1392,共14页
We have studied the reaction mechanism of CO oxidation on the Cu13 cluster via density functional theory. There are two main reaction pathways to be considered: Eley-Rideal(ER) and Langmuir-Hinshelwood(LH) mechan... We have studied the reaction mechanism of CO oxidation on the Cu13 cluster via density functional theory. There are two main reaction pathways to be considered: Eley-Rideal(ER) and Langmuir-Hinshelwood(LH) mechanisms, respectively. According to these two main reaction mechanisms, we have obtained five reaction pathways for the first CO oxidation(denoted as RER1,RER2, RLH1, RLH2 and RLH3, respectively): RER1 is COgas + O2(ads) → O(ads) + CO2(gas); RER2 is COgas + O2(ads) → CO3(ads) → O(ads) + CO2(gas); RLH1 refers to CO(ads) + O2(ads) → O(ads) + CO2(gas); RLH2 refers to CO(ads) + O2(ads) → OOCO(ads) → O(ads) + CO2(gas) and RLH3 refers to O2(ads) + CO(ads)→ O(ads) + O(ads) + CO(ads) → O(ads) + CO2(gas). These pathways have low energy barriers and are strongly exothermic, suggesting the Cu13 cluster is very favorable catalyst for the first CO oxidation. However, there are higher energy barriers of 99. 8 and 45.4 kJ/mol in the process of producing and decomposing intermediates along the RLH2 and RER2, indicating that RER1, RLH1 and RLH3 are superior pathways with lower energy barriers, especially the RER1 channel. Thereafter, the second CO is more prone to react with the remaining oxygen atom on Cu13 along the ER channel in comparison with the LH pathway, in which the moderate barrier is 70.0 kJ/mol and it is exothermic by 59.6 kJ/mol. Furthermore, the interaction between the absorbate and cluster is analyzed by electronic analysis to gain insights into high activity of the copper cluster. 展开更多
关键词 reaction mechanism CO oxidation copper cluster catalyst electronic analysis
下载PDF
Au/CuO<sub>x</sub>-TiO<sub>2</sub>Catalysts for CO Oxidation at Low Temperature
10
作者 Feng-Chyi Duh Der-Shing Lee Yu-Wen Chen 《Modern Research in Catalysis》 2013年第1期1-8,共8页
A series of Au/CuOx-TiO2 with various Cu/Ti ratios were prepared. CuOx/TiO2 was prepared by incipient-wetness im- pregnation with aqueous solution of copper nitrate. Au catalysts were prepared by deposition-precipitat... A series of Au/CuOx-TiO2 with various Cu/Ti ratios were prepared. CuOx/TiO2 was prepared by incipient-wetness im- pregnation with aqueous solution of copper nitrate. Au catalysts were prepared by deposition-precipitation method at pH 7 and 338 K. The catalysts were characterized by inductively-coupled plasma-mass spectrometry, temperature pro- gramming reduction, X-ray diffraction, transmission electron microscopy, high-resolution transmission electron mi- croscopy and X-ray photoelectron spectroscopy. The reaction was carried out in a fixed bed reactor with a feed con- taining 1% CO in air at WHSV of 120,000 mL/h·g. High gold dispersion and narrow size distribution was obtained. The addition of CuOx in Au/TiO2 enhanced the activity on CO oxidation significantly. CuOx was in amorphous state which could stabilize the Au nanoparticles. Cu was in Cu1+ state. Cu donated partial electrons to Au. The interactions among Au, Cu1+ and TiO2 account for the high catalytic activity for CO oxidation. The significant promotional effect of CuOx on CO oxidation at low temperature was demonstrated. 展开更多
关键词 CO oxidATION GOLD catalystS copper Nanometal
下载PDF
Cu-TiO_(2)@CeO_(2)催化剂催化氧化NH_(3)/Hg^(0)
11
作者 陈传敏 彭钦磊 +5 位作者 曹悦 吴佳艺 陈韵伊 刘妍 刘松涛 贾文波 《化学工程》 CAS CSCD 北大核心 2024年第10期19-24,38,共7页
为了减少SCR系统逃逸氨和气态单质汞的排放,采用模板法制备一系列具有氨氧化和汞氧化活性的Cu-TiO_(2)@CeO_(2)催化剂,在150—400℃下测试其氨氧化和汞氧化性能,并对其进行了XRD(X射线衍射)、BET(比表面积测试)和XPS(X射线光电子能谱)... 为了减少SCR系统逃逸氨和气态单质汞的排放,采用模板法制备一系列具有氨氧化和汞氧化活性的Cu-TiO_(2)@CeO_(2)催化剂,在150—400℃下测试其氨氧化和汞氧化性能,并对其进行了XRD(X射线衍射)、BET(比表面积测试)和XPS(X射线光电子能谱)表征。结果表明:高温可以促进NH_(3)的氧化,但不利于保持高N 2选择性和Hg^(0)氧化效果。随着铜、铈质量分数的增加,催化剂的氨氧化和汞氧化活性均逐渐增加,而N_(2)选择性有所下降。其中Cu、Ce质量分数为5%的Cu-TiO_(2)@CeO_(2)-5催化剂可以达到较为理想的NH_(3)和Hg^(0)去除效果,350℃下对NH_(3)和Hg^(0)的氧化效率均高于90%,N_(2)选择性在95%以上,副产物N 2 O生成量低于5×10^(-6)。表征结果显示Cu-TiO_(2)@CeO_(2)催化剂中形成了Cu^(+)+Ce^(4+)←→Cu^(2+)+Ce^(3+)氧化还原双电对,Cu与Ce的氧化物在NH_(3)和Hg^(0)氧化反应中起协同作用,大量的Oβ作为活性氧参与到反应中,有效促进了NH_(3)和Hg^(0)的催化脱除。 展开更多
关键词 氨氧化 双功能催化剂 核壳结构
下载PDF
丙烯气相直接氧化制环氧丙烷铜基催化剂研究进展
12
作者 高海洋 焦阳 +5 位作者 史建公 张毅 苑志伟 桂建舟 刘丹 郭玉高 《中外能源》 CAS 2024年第3期67-76,共10页
环氧丙烷(PO)作为一种用途广泛的有机化合物原料,主要用于合成聚氨酯塑料。聚氨酯塑料因其卓越的弹性、耐久性和多样性,在许多日用品及工业产品中发挥着重要作用。传统的环氧丙烷生产方法常常步骤繁琐并且效率不高,因此科学界持续寻找... 环氧丙烷(PO)作为一种用途广泛的有机化合物原料,主要用于合成聚氨酯塑料。聚氨酯塑料因其卓越的弹性、耐久性和多样性,在许多日用品及工业产品中发挥着重要作用。传统的环氧丙烷生产方法常常步骤繁琐并且效率不高,因此科学界持续寻找更为简洁和环保的合成路径。近年来,通过利用分子氧直接环氧化丙烯来合成环氧丙烷的技术引起了人们广泛的兴趣,因为这种方法有望简化生产流程,同时减少有害副产品的生成。通过介绍不同形貌(八面体、立方体、纳米管、纳米棒等)、不同粒径氧化亚铜的调节和制备方法,讨论催化性能的影响因素,例如氧化亚铜的形貌、载体、粒径等,探索不同元素(卤族元素、碱土金属等)掺杂对氧化亚铜催化性能的不同作用方式。在论述这些实验观察和结果的基础上,通过进一步讨论丙烯环氧化反应的可能机理和途径,针对环氧化反应提供详细的分子水平的视角。通过这项研究,希望能够更有效地设计催化剂,优化制备过程,并为环氧丙烷的绿色生产作出贡献,推动聚氨酯塑料行业的可持续发展。 展开更多
关键词 催化剂 丙烯 环氧丙烷 直接氧化法 氧化亚铜
下载PDF
工艺条件对含氟氯化氢催化氧化制氯气的影响
13
作者 于蒙 胥亚琨 +2 位作者 李育桥 郑佳 王昊 《现代化工》 CAS CSCD 北大核心 2024年第S02期265-268,共4页
采用等体积浸渍法制备了耐氟铜基催化剂,在99.9%HCl+0.1%HF混合气氛下制氯气,通过正交实验考察了反应温度、HCl和O_(2)体积比、质量空速对HCl单程转化率的影响。结果表明,在反应温度为390℃、HCl和O_(2)体积比为2∶1、质量空速为1 h^(-1... 采用等体积浸渍法制备了耐氟铜基催化剂,在99.9%HCl+0.1%HF混合气氛下制氯气,通过正交实验考察了反应温度、HCl和O_(2)体积比、质量空速对HCl单程转化率的影响。结果表明,在反应温度为390℃、HCl和O_(2)体积比为2∶1、质量空速为1 h^(-1)的最佳反应条件下,氯化氢单程转化率可达92.5%;为进一步验证催化剂稳定性,运行1500 h后HCl单程转化率稳定在91%~93%之间。通过ICP分析,催化剂中活性组分Cu元素流失率为1.175×10^(-5)g/h,初步估算稳定运行10000 h后,Cu流失仅为催化剂Cu元素添加量的1.68%,说明该催化剂具有较好的活性、稳定性和耐氟能力。 展开更多
关键词 含氟氯化氢 催化氧化 耐氟铜基催化剂 氯气 正交实验
下载PDF
基于湿式空气均相催化氧化处理农药污泥研究
14
作者 陈磊 江海云 +2 位作者 张毅 陈丽娜 张燕 《世界农药》 CAS 2024年第5期25-29,共5页
以催化湿式氧化工艺为主要手段,针对农药污泥种类繁多、污染物浓度高、毒性大,且作为危险固废送至焚烧处置成本极高的问题展开研究。重点探讨了在湿式氧化处理过程中,以铜离子作为催化活性物种,在不同条件下对农药污泥中化学需氧量(COD... 以催化湿式氧化工艺为主要手段,针对农药污泥种类繁多、污染物浓度高、毒性大,且作为危险固废送至焚烧处置成本极高的问题展开研究。重点探讨了在湿式氧化处理过程中,以铜离子作为催化活性物种,在不同条件下对农药污泥中化学需氧量(COD)与可挥发性固体(VS)的去除效率。结果表明,催化剂的添加能够显著提高湿式氧化法对农药污泥特征污染物的去除率,在反应温度260℃,搅拌转数为300r/min,铜离子添加量为0.20g/L,反应时间60 min的条件下,污泥VS和COD的去除率分别可以达到90%、80%以上。因此催化湿式氧化法可为农药处置中实现减量化与污染物无害化处理提供相关参考。 展开更多
关键词 农药污泥 催化湿式氧化 铜催化剂
下载PDF
Synergistic degradation of phenols by bimetallic CuO-Co_3O_4@γ-Al_2O_3 catalyst in H_2O_2/HCO_3^- system 被引量:8
15
作者 李一冰 Ali Jawad +4 位作者 Aimal Khan 卢小艳 陈朱琦 刘卫东 尹国川 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第6期963-970,共8页
The development of new catalytic techniques for wastewater treatment has long attracted much attention from industrial and academic communities.However,because of catalyst leaching during degradation,catalysts can be ... The development of new catalytic techniques for wastewater treatment has long attracted much attention from industrial and academic communities.However,because of catalyst leaching during degradation,catalysts can be short lived,and therefore expensive,and unsuitable for use in wastewater treatment.In this work,we developed a bimetallic CuO-Co3O4@γ-Al2O3 catalyst for phenol degradation with bicarbonate-activated H2O2.The weakly basic environment provided by the bicarbonate buffer greatly suppresses leaching of active Cu and Co metal ions from the catalyst.X-ray diffraction and X-ray photoelectron spectroscopy results showed interactions between Cu and Co ions in the CuO-Co3O4@γ-Al2O3 catalyst,and these improve the catalytic activity in phenol degradation.Mechanistic studies using different radical scavengers showed that superoxide and hydroxyl radicals both played significant roles in phenol degradation,whereas singlet oxygen was less important. 展开更多
关键词 Synergistic effect Phenol degradation copper/cobalt oxide catalyst Mechanistic study Bicarbonate-activated H2O2
下载PDF
Effect of tungsten oxide on ceria nanorods to support copper species as CO oxidation catalysts 被引量:5
16
作者 Yu'nan Li Lin Gan Rui Si 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第1期43-50,I0002,共9页
In this work,tungsten oxide with different concentrations(0,0.4 at%,2.0 at%and 3.2 at%)was introduced to the ceria nanorods via a deposition-precipitation(DP)approach,and copper species of ca.10 at%were sequentially a... In this work,tungsten oxide with different concentrations(0,0.4 at%,2.0 at%and 3.2 at%)was introduced to the ceria nanorods via a deposition-precipitation(DP)approach,and copper species of ca.10 at%were sequentially anchored onto the modified ceria support by a similar DP route.The aim of the study was to investigate the effect of the amount of tungsten oxide(0,0.4 at%,2.0 at%,and 3.2 at%)modifier on the copper-ceria catalysts for CO oxidation reaction and shed light on the structure-activity relationship.By the aids of multiple characterization techniques including N2 adsorption,high-resolution transmission electron microscopy(HRTEM),powder X-ray diffraction(XRD),X-ray absorption fine structure(XAFS),and temperature-programmed reduction by hydrogen(H2-TPR)in combination with the catalytic performance for CO oxidation reaction,it is found that the copper-ceria samples maintain the crystal structure of the fluorite fcc CeO2 phase with the same nanorod-like morphology with the introduction of tungsten oxide,while the textural properties(the surface area,pore volume and pore size)of ceria support and copper-ceria catalysts are changed,and the oxidation states of copper and tungsten are kept the same as Cu2+and W6+before and after the reaction,but the introduction of tungsten oxide(WO3)significantly changes the metal-support interaction(transfer the CuOx clusters to Cu-[Ox]-Ce species),which delivers to impair the catalytic activity of copper-ceria catalysts for CO oxidation reaction. 展开更多
关键词 copper catalyst CERIA Tungsten oxide CO oxidation Structure-activity relationship Rare earths
原文传递
A Novel Cu-Mo/ZSM-5 Catalyst for NO_x Catalytic Reduction with Ammonia 被引量:1
17
作者 ZheLi DangLi WeiHuang KechangXie 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2005年第2期115-118,共4页
The Cu-Mo/ZSM-5 catalysts with different Cu/Mo ratios were prepared by wetimpregnation method, and their catalytic performance for selective catalytic reduction of NO_x wasstudied. The results showed that Cu-Mo/ZSM-5 ... The Cu-Mo/ZSM-5 catalysts with different Cu/Mo ratios were prepared by wetimpregnation method, and their catalytic performance for selective catalytic reduction of NO_x wasstudied. The results showed that Cu-Mo/ZSM-5 is a very effective catalyst for NO_x catalyticreduction with ammonia, especially when Cu/Mo molar ratio is about 1.5. It not only exhibited theextremely high catalytic activity, but also showed good stability for O_2. The bulk phase structureof Cu-Mo/ZSM-5 catalysts was determined by XRD technique, and the results indicated that there is amaximum dispersion for Cu species when Cu/Mo molar ratio is 1.5, and an interaction between Cu andMo along with HZSM-5 may be present in Cu-Mo/ZSM-5, which may possibly result in a special structurefavorable for the catalytic reduction of NO_x over Cu-Mo/ZSM-5 catalyst. 展开更多
关键词 nitrogen oxide selective catalytic reduction copper MOLYBDENUM ZSM-5 catalyst
下载PDF
Effect of doping rare earth oxide on performance of copper-manganese catalysts for water-gas shift reaction 被引量:8
18
作者 何润霞 姜浩强 +4 位作者 武芳 智科端 王娜 周晨亮 刘全生 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第4期298-305,共8页
Rare earth-doped copper-manganese mixed oxide catalysts were prepared by coprecipitation and mechanical mixing using copper sulfate, manganese sulfate, and rare-earth oxides REO (REO indicates La2O3, CeO2, Y2O3, or P... Rare earth-doped copper-manganese mixed oxide catalysts were prepared by coprecipitation and mechanical mixing using copper sulfate, manganese sulfate, and rare-earth oxides REO (REO indicates La2O3, CeO2, Y2O3, or Pr6O11) as raw materials. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), temperature-programmed reduc-tion of oxidized surfaces (s-TPR), and temperature-programmed desorption (TPD). Catalytic activities were tested for a water-gas shift reaction. Doping rare earth oxides did not alter the crystal structure of the original copper-manganese mixed oxides but changed the interplanar spacing, adsorption performance and reaction performance. Doping with La2O3 enhanced the activity and stability of Cu-Mn mixed oxides because of high copper distribution and fine reduction. Doping with CeO2 and Y2O3 also decreased the reduc-tion temperatures of the samples to different degrees while improving the dispersion of Cu on the surface, thus, catalytic activity was better than that of undoped Cu-Mn sample. The Pr6O11-doped sample was difficult to reduce, the dispersion of surface coppers was lowered, resulting in poor activity. 展开更多
关键词 rare earth oxide copper-manganese catalyst water-gas shift reaction STABILITY
原文传递
Doping Effect of CuO on CeO_2 for CO Oxidation 被引量:1
19
作者 Ji Jun ZHANG Neng LI +1 位作者 Ying Jun LIU Bing Xiong LIN(Institute of Physical Chemistry, Peking University, Beijing 100871) 《Chinese Chemical Letters》 SCIE CAS CSCD 1998年第9期873-876,共4页
Cu-Ce-O catalysts, prepared by the amorphous citrate precursor (ACP) method, wereinvestigated by ICP, XRD and ndcro-reactor techniques. At low copper content of Cu-Ce-Ocatalysts, fluorite structures formed at low calc... Cu-Ce-O catalysts, prepared by the amorphous citrate precursor (ACP) method, wereinvestigated by ICP, XRD and ndcro-reactor techniques. At low copper content of Cu-Ce-Ocatalysts, fluorite structures formed at low calcining temperatures, and Cuo doped into the CeO2matrix; at high copper content, in addition to the fluorite structure, crystalline monoclinic phaseCuO formed as well at high calcining temperatures. There was no other phase formed even calcinedat 1000℃. The results show that only a little CuO dopes into the CeO2 matrix to form complexoxide, which promotes the catalytic activity of CO oxidation greatly. The optimum Cu-Ce-Ocatalyst is composed of 15% copper by Cu/(Ce+Cu) atomic ratio, and calcined at 700℃ for 4h. Thephase compositions include the crystalline CuO and the active complex oxide with fluoritestructure. The formulation of the active complex oxide is Cu0.06Ce0. 94O1.94. 展开更多
关键词 CERIA copper oxide fluorite-type structure CO oxidation catalyst doping effect
下载PDF
Buffer anion effects on water oxidation catalysis: The case of Cu(Ⅲ) complex 被引量:1
20
作者 Qifa Chen Haoyi Du Mingtian Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第8期1338-1344,共7页
Water oxidation is the bottleneck of artificial photosynthesis.Since the first ruthenium-based molecular water oxidation catalyst,the blue dimer,was reported by Meyer’ s group in 1982,catalysts based on transition me... Water oxidation is the bottleneck of artificial photosynthesis.Since the first ruthenium-based molecular water oxidation catalyst,the blue dimer,was reported by Meyer’ s group in 1982,catalysts based on transition metals have been widely employed to explore the mechanism of water oxidation.Because the oxidation of water requires harsh oxidative conditions,the stability of transition complexes under the relevant catalytic conditions has always been a challenge.In this work,we report the redox properties of a CuⅢ complex(TAML-CuⅢ] with a redox-active macrocyclic ligand(TAML) and its reactivity toward catalytic water oxidation.TAML-CuⅢ displayed a completely different electrochemical behavior from that of the TAML-CoⅢ complex previously reported by our group.TAML-CuⅢ can only be oxidized by one-electron oxidation of the ligand to form TAML·+-CuⅢand cannot achieve water activation through the ligand-centered proton-coupled electron transfer that takes place in the case of TAML-CoⅢ.The generated TAML·+-CuⅢ intermediate can undergo further oxidation and ligand hydrolysis with the assistance of borate anions,triggering the formation of a heterogeneous B/CuOx nanocatalyst Therefore,the choice of the buffer solution has a significant influence on the electrochemical behavior and stability of molecular water oxidation catalysts. 展开更多
关键词 Artificial photosynthesis Water oxidation Redox-active ligand copper catalyst Buffer anion effect
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部