期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Preparation of Pure Copper Powder from Acidic Copper Chloride Waste Etchant
1
作者 H.S.Hong M.S.Kong +2 位作者 J.K.Ghu J.K.Lee H.G.Suk 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第1期141-142,共2页
The method for the recycling of copper from copper chloride solution was developed. This process consists of extraction of copper, purification and particle size reduction. In the first step, reductive metal scraps we... The method for the recycling of copper from copper chloride solution was developed. This process consists of extraction of copper, purification and particle size reduction. In the first step, reductive metal scraps were added to acidic copper chloride waste enchants produced in the PCB industry to obtain copper powder. Composition analysis showed that this powder contained impurities such as Fe, Ni, and water. So, drying and purification were carried out by using microwave and a centrifugal separator. Thereby the copper powder had a purity of higher than 99% and spherical form in morphology. The copper powder size was decreased by ball milling. 展开更多
关键词 copper chloride liquid waste Printed circuit board (PCB) Liquid waste Highpurity copper powder
下载PDF
Smelting chlorination method applied to removal of copper from copper slags 被引量:6
2
作者 李磊 王华 胡建杭 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期59-65,共7页
In order to reasonably utilize the iron resources of copper slags, the smelting chlorination process was used to remove copper from copper slags. Higher holding temperature and O2 flow rate are beneficial to increasin... In order to reasonably utilize the iron resources of copper slags, the smelting chlorination process was used to remove copper from copper slags. Higher holding temperature and O2 flow rate are beneficial to increasing copper removal rate. However,the Cu2O mode is formed by the reaction of surplus O2 and CuCl with O2 flow rate increasing over 0.4 L/min, causing CuCl volatilization rate and copper removal rate to decrease. The resulting copper removal rate of 84.34% is obtained under the optimum conditions of holding temperature of 1573 K, residence time of 10 min, Ca Cl2 addition amount of 0.1(mass ratio of CaCl2 and the copper slag) and oxygen flow rate of 0.4 L/min. The efficient removal of copper from copper slags through chlorination is feasible. 展开更多
关键词 copper slags smelting chlorination copper removal volatilization waste utilization
下载PDF
Copper recovery from waste printed circuit boards concentrated metal scraps by electrolysis 被引量:1
3
作者 Xiaonan Liu Qiuxia Tan +2 位作者 Yungui Li Zhonghui Xu Mengjun Chen 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第5期107-111,共5页
Copper recovery is the core of waste printed circuit boards (WPCBs) treatment. In this study, we proposed a feasible and efficient way to recover copper from WPCBs concentrated metal scraps by direct electrolysis an... Copper recovery is the core of waste printed circuit boards (WPCBs) treatment. In this study, we proposed a feasible and efficient way to recover copper from WPCBs concentrated metal scraps by direct electrolysis and thctors that affect copper recovery rate and purity, mainly CuSO4.5H2O concentration, NaCI concentration, H2SO4 concentration and current density, were discussed in detail. The results indicated that copper recovery rate increased first with the increase ofCuSO4- 5H2O, NaCI, H2SO4 and current density and then decreased with further increasing these conditions. NaCI, H2SO4 and current density also showed a similar impact on copper purity, which also increased first and then decreased. Copper purity increased with the increase of CuSO4.5H2O. When the concentration of CuSO4-5H2O NaCI and H2oSO4 was respectively 90, 40 and 118 g/L and current density was 80 mA/cm-, copper recovery rate and purity was up to 97.32% and 99.86%, respectively. Thus, electrolysis proposes a feasible and prospective approach for waste printed circuit boards recycle, even for e-waste, though more researches are needed for industrial application. 展开更多
关键词 waste printed circuit boards (WPCBs)copper Recovery rate Purity Electrolysis
原文传递
Variability of waste copper slag concrete and its effect on the seismic safety of reinforced concrete building: A case study
4
作者 Swetapadma PANDA Nikhil P.ZADE +1 位作者 Pradip SARKAR Robin DAVIS 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第1期117-130,共14页
Proven research output on the behavior of structures made of waste copper slag concrete can improve its utilization in the construction industry and thereby help to develop a sustainable built environment.Although num... Proven research output on the behavior of structures made of waste copper slag concrete can improve its utilization in the construction industry and thereby help to develop a sustainable built environment.Although numerous studies on waste copper slag concrete can be found in the published literature,no research has focused on the structural application of this type of concrete.In particular,the variability in the strength properties of waste copper slag concrete,which is required for various structural applications,such as limit state design formulation,reliability-based structural analysis,etc.,has so far not attracted the attention of researchers.This paper quantifies the uncertainty associated with the compressive-,flexural-and split tensile strength of hardened concrete with different dosages of waste copper slag as fine aggregate.Best-fit probability distribution models are proposed based on statistical analyses of strength data generated from laboratory experiments.In addition,the paper presents a reliability-based seismic risk assessment of a typical waste copper slag incorporated reinforced concrete framed building,considering the proposed distribution model.The results show that waste copper slag can be safely used for seismic resistant structures as it results in an identical probability of failure and dispersion in the drift demand when compared with a conventional concrete building made of natural sand. 展开更多
关键词 waste copper slag quantification of variability goodness-of-fit test seismic risk assessment PSDM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部