An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface ar...An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface are refined in the radial profiles of cone-shaped deformation zone,but the grains in the center maintain the original state and the grain size is non-uniform.A clear boundary presents between the refined area and center area.In contrast,the copper grains in the radial profiles have been significantly refined.In the center area of the copper,the grains are bigger than those at the boundary.On the surface of the deformable body,the grain size is the smallest,but with irregular grain morphology.After the product is entirely extruded,all the copper and aluminum grains are refined with small and uniform morphology.In the center area,the average diameter of aluminum grains is smaller than 5 μm,and the copper grain on the surface is about 10 μm.At the interface,the grain size is very small,with a good combination of copper and aluminum.The thickness of interface is in the range of 10-15 μm.Energy spectrum analysis shows that CuAl3 phase presents at the interface.展开更多
Multi-pass friction stir processing(M-FSP)was performed to repair the interface defects of AA5083/T2 copper explosive composite plates.The interface morphology and its bonding mechanism were explored.The results show ...Multi-pass friction stir processing(M-FSP)was performed to repair the interface defects of AA5083/T2 copper explosive composite plates.The interface morphology and its bonding mechanism were explored.The results show that higher rotation speed and lower transverse speed produce more heat generated during FSP.The defect-free and good mechanical properties of the AA5083/T2 copper composite plate can be obtained under the condition of the rotation speed of 1200 r/min,the transverse speed of 30 mm/min and the overlap of 2/24.Moreover,M-FSP changes the interface bonding mechanism from metallurgical bonding to vortex connection,improving the bonding strength of composite plate,which can guarantee the repairing quality of composite plates.展开更多
Copper cladding aluminum(CCA)rods with the section dimensions of12mm in diameter and2mm in sheath thickness were fabricated by vertical core-filling continuous casting(VCFC)technology.The kinds and morphology of inter...Copper cladding aluminum(CCA)rods with the section dimensions of12mm in diameter and2mm in sheath thickness were fabricated by vertical core-filling continuous casting(VCFC)technology.The kinds and morphology of interfacial intermetallic compounds(IMCs)were investigated by SEM,XRD and TEM.The results showed that the interfacial structure of Cu/Al was mainly composed of layeredγ1(Cu9Al4),cellularθ(CuAl2),andα(Al)+θ(CuAl2)phases.Moreover,residual acicularε2(Cu3Al2+x)phase was observed at the Cu/Al interface.By comparing the driving force of formation forε2(Cu3Al2+x)andγ1(Cu9Al4)phases,the conclusion was drawn that theε2(Cu3Al2+x)formed firstly at the Cu/Al interface.In addition,the interfacial formation mechanism of copper cladding aluminum composites was revealed completely.展开更多
The researchers made magnesium aluminum composite panels by asymmetric metal packaging and studied rolling temperature,holding time,and high temperature heat treatment,such as short time and low temperatures over long...The researchers made magnesium aluminum composite panels by asymmetric metal packaging and studied rolling temperature,holding time,and high temperature heat treatment,such as short time and low temperatures over long periods of time parameters under the new preparation method.We tested the new magnesium aluminum composite panels’tensing properties and bending performance by using scanning electric mirror and EDS.It is concluded that the new magnesium aluminum composite panels’elongation is 24%under the tensile strength of 260 MPa.Regarding performance when compared with other methods,traditional magnesium aluminum composite panels’elongation is 10%,which shows its advanced nature.At the same time,bending performance test showed that the combination of the composite board has higher performance,offering the reference value for the preparation of magnesium–aluminum composite plate.展开更多
Copper coating was deposited on the surface of aluminum borate whisker by an electroless plating method.This method was used to modify the interfacial property of squeeze-casting aluminum borate whisker reinforced 606...Copper coating was deposited on the surface of aluminum borate whisker by an electroless plating method.This method was used to modify the interfacial property of squeeze-casting aluminum borate whisker reinforced 6061Al matrix composite.Interface observation indicates that the spinel reaction(MgAl2O4) is hindered by the copper coating,and the difference in interfacial reaction degree affects the tensile property and aging behavior of the composite.For the composite with less spinel reaction(MgAl2O4),its peak-aging process are postponed due to less depletion of magnesium.On the fracture surface of copper-coated composite dimples and fractures of whiskers are more,but on the fracture surface of uncoated composite pull-out of whiskers are more than that on the coated one.In uncoated composite the fracture generally originates from the near-interface-region.展开更多
Aluminum matrix composites(AMCs), reinforced with novel pre-synthesized Al/Cu Fe multi-layered coreshell particles, were fabricated by different consolidation techniques to investigate their effect on microstructure a...Aluminum matrix composites(AMCs), reinforced with novel pre-synthesized Al/Cu Fe multi-layered coreshell particles, were fabricated by different consolidation techniques to investigate their effect on microstructure and mechanical properties. To synthesize multi-layered Al/Cu Fe core-shell particles, Cu and Fe layers were deposited on Al powder particles by galvanic replacement and electroless plating method, respectively. The core-shell powder and sintered compacts were characterized by using X-ray diffraction(XRD), scanning electron microscopy(SEM) equipped with energy dispersive spectroscopy(EDX), pycnometer, microhardness and compression tests. The results revealed that a higher extent of interfacial reactions, due to the transformation of the deposited layer into intermetallic phases in spark plasma sintered composite, resulted in high relative density(99.26%), microhardness(165 HV0.3) and strength(572 MPa). Further, the presence of un-transformed Cu in the shell structure of hot-pressed composite resulted in the highest fracture strain(20.4%). The obtained results provide stronger implications for tailoring the microstructure of AMCs through selecting appropriate sintering paths to control mechanical properties.展开更多
Cu/Al composites are of vital importance in industrial applications because of their numerous advantages. The influence of bond-ing temperature and cooling rate on the microstructure and morphology of Cu/Al composites...Cu/Al composites are of vital importance in industrial applications because of their numerous advantages. The influence of bond-ing temperature and cooling rate on the microstructure and morphology of Cu/Al composites was investigated in this paper. The interfacial morphology and constituent phases at the Cu/Al interface were analyzed by optical microscopy and field-emission scanning electron mi-croscopy equipped with energy-dispersive X-ray spectroscopy. The results indicate that effective Cu-Al bonding requires a higher bonding temperature to facilitate interdiffusion between the two metals. The microstructural characteristics are associated with various bonding tem-peratures, which impact the driving force of interdiffusion. It is observed that cooling rate exerts a significant influence on the morphology and amount of the intermetallic compounds at the interfacial region. Meanwhile, microhardness measurements show that hardness varies with the bonding temperature and rate of cooling.展开更多
An Al_2O_(3f)/Al-4.5Cu composite was made by squeeze casting. The solutesegregation in the composite at different cooling rates was studied. The results indicate that theprimary crystal of Al-4.5Cu alloy nucleates and...An Al_2O_(3f)/Al-4.5Cu composite was made by squeeze casting. The solutesegregation in the composite at different cooling rates was studied. The results indicate that theprimary crystal of Al-4.5Cu alloy nucleates and grows in the interstice between fibers. The fibersurface cannot serve as site for the heterogeneous nucleation of a primary dendrite. There exists anincreasing Cu concentration gradient from the center of the interstice between fibers to theinterface or the grain boundaries. There are the eutectic phases around the fibers. The solutesegregation in the matrix increases with the cooling rate rising. The amount of eutectic phasesfollowed by imbalance crystalline can be numerically calculated with Clyne-Kurz formula.展开更多
Copper-coated aluminum wires exhibit good electrical conductivity, high thermal conductivity, low contact resistance of copper and low density, and provide economic advantages over aluminum. However, there are some pr...Copper-coated aluminum wires exhibit good electrical conductivity, high thermal conductivity, low contact resistance of copper and low density, and provide economic advantages over aluminum. However, there are some problems in the manufacring processes of hot-dip copper-coated aluminum wires, such as the difficulties in controlling coating process. In this work, the hot-dip copper-coating method of aluminum wires was investigated for producing copper-coated aluminum wire composites. The interface microstructure between the aluminum wire and the copper coating layer was analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spec- trometry (EDS). Five different fluxing agents were tested. Experimental results show that appropriate conditions for the hot-dip process are determined as the liquid copper temperature of 1085℃ and the treatment time less than 1 s. A success in hot-dip copper-coated aluminum wires is achieved by hot-dipping a low-melting-point metal into a high-melting-point metal liquid, which is significant for the further devel- opment and application of copper-coated aluminum wire composites.展开更多
The different copper coatings with thickness varying from 0.3μm to 1.5μm were deposited on carbon fibers using either electroless plating or electroplating method. The coated fibers were chopped and composites were ...The different copper coatings with thickness varying from 0.3μm to 1.5μm were deposited on carbon fibers using either electroless plating or electroplating method. The coated fibers were chopped and composites were fabricated with melting aluminum at 700℃. The effect of the copper layer on the microstructure in the system was discussed. The results show that the copper layer has fully reacted with aluminum matrix, and the intermetallic compound CuAl2 forms through SEM observation and XRD, EDX analysis. The results of tensile tests indicate that composites fabricated using carbon fibers with 0.7-1.1μm copper coating perform best and the composites turn to more brittle as the thickness of copper coating increases. The fracture surface observation exhibits good interface bonding and ductility of the matrix alloy when the thickness of copper coating is about 0.7-1.1μm.展开更多
The tribological performance of the sliding bearings which are probably made of polymers, which is subjected to magnetic field, is of great intense. The wear of epoxy composites filled by metallic particles such as ir...The tribological performance of the sliding bearings which are probably made of polymers, which is subjected to magnetic field, is of great intense. The wear of epoxy composites filled by metallic particles such as iron, copper and aluminum scratched by steel indenter is investigated. The wear scar width of the scratch was measured by an optical microscope. It was found that wear displayed by the scratch of epoxy filled by the metallic filling materials such as iron, copper and aluminum increased with increasing applied load. As the content of the metallic filling materials increased, wear slightly increased due to the reduction in cohesive stress inside the matrix as well as the epoxy transfer into the indenter surface might be responsible for that behavior. For epoxy filled by iron, when the magnetic field was applied to the contact area wear significantly decreased. Increasing the intensity of the magnetic field showed slight wear increase. Wear displayed by the scratch of epoxy filled by copper showed higher values than that observed for copper filled epoxy. Presence of the magnetic field might generate electric current at the contact area leading to an increase in the intensity of the electric static charge. Moreover, wear of epoxy filled by aluminum showed lower values than that observed for epoxy composites filled by copper and higher than that displayed by iron filled epoxy composites. Under the effect of magnetic field, wear significantly increased. This behavior could explained on the basis that the presence of magnetic field accompanied by the movement of the indenter in the epoxy composites generated electric current passing through the steel indenter which caused softening of the epoxy composites. In that condition removal of epoxy from the wear track was easier and epoxy transfer into the steel indenter was accelerated.展开更多
基金Project(60806006) supported by the National Natural Science Foundation of China
文摘An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface are refined in the radial profiles of cone-shaped deformation zone,but the grains in the center maintain the original state and the grain size is non-uniform.A clear boundary presents between the refined area and center area.In contrast,the copper grains in the radial profiles have been significantly refined.In the center area of the copper,the grains are bigger than those at the boundary.On the surface of the deformable body,the grain size is the smallest,but with irregular grain morphology.After the product is entirely extruded,all the copper and aluminum grains are refined with small and uniform morphology.In the center area,the average diameter of aluminum grains is smaller than 5 μm,and the copper grain on the surface is about 10 μm.At the interface,the grain size is very small,with a good combination of copper and aluminum.The thickness of interface is in the range of 10-15 μm.Energy spectrum analysis shows that CuAl3 phase presents at the interface.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51505293)the Natural Science Foundation of Jiangsu Province,China(No.BK20190684)+1 种基金the Natural Science Research of the Jiangsu Higher Education Institutions of China(No.18KJB460016)the Key Laboratory of Lightweight Materials,Nanjing Tech University,as well as by a fellowship from the International Postdoctoral Exchange Followship Program(2020096 to Jian WANG).
文摘Multi-pass friction stir processing(M-FSP)was performed to repair the interface defects of AA5083/T2 copper explosive composite plates.The interface morphology and its bonding mechanism were explored.The results show that higher rotation speed and lower transverse speed produce more heat generated during FSP.The defect-free and good mechanical properties of the AA5083/T2 copper composite plate can be obtained under the condition of the rotation speed of 1200 r/min,the transverse speed of 30 mm/min and the overlap of 2/24.Moreover,M-FSP changes the interface bonding mechanism from metallurgical bonding to vortex connection,improving the bonding strength of composite plate,which can guarantee the repairing quality of composite plates.
基金Project(51274038)supported by the National Natural Science Foundation of China
文摘Copper cladding aluminum(CCA)rods with the section dimensions of12mm in diameter and2mm in sheath thickness were fabricated by vertical core-filling continuous casting(VCFC)technology.The kinds and morphology of interfacial intermetallic compounds(IMCs)were investigated by SEM,XRD and TEM.The results showed that the interfacial structure of Cu/Al was mainly composed of layeredγ1(Cu9Al4),cellularθ(CuAl2),andα(Al)+θ(CuAl2)phases.Moreover,residual acicularε2(Cu3Al2+x)phase was observed at the Cu/Al interface.By comparing the driving force of formation forε2(Cu3Al2+x)andγ1(Cu9Al4)phases,the conclusion was drawn that theε2(Cu3Al2+x)formed firstly at the Cu/Al interface.In addition,the interfacial formation mechanism of copper cladding aluminum composites was revealed completely.
基金the Shanxi Province University Science and Technology innovation project(2014108).
文摘The researchers made magnesium aluminum composite panels by asymmetric metal packaging and studied rolling temperature,holding time,and high temperature heat treatment,such as short time and low temperatures over long periods of time parameters under the new preparation method.We tested the new magnesium aluminum composite panels’tensing properties and bending performance by using scanning electric mirror and EDS.It is concluded that the new magnesium aluminum composite panels’elongation is 24%under the tensile strength of 260 MPa.Regarding performance when compared with other methods,traditional magnesium aluminum composite panels’elongation is 10%,which shows its advanced nature.At the same time,bending performance test showed that the combination of the composite board has higher performance,offering the reference value for the preparation of magnesium–aluminum composite plate.
文摘Copper coating was deposited on the surface of aluminum borate whisker by an electroless plating method.This method was used to modify the interfacial property of squeeze-casting aluminum borate whisker reinforced 6061Al matrix composite.Interface observation indicates that the spinel reaction(MgAl2O4) is hindered by the copper coating,and the difference in interfacial reaction degree affects the tensile property and aging behavior of the composite.For the composite with less spinel reaction(MgAl2O4),its peak-aging process are postponed due to less depletion of magnesium.On the fracture surface of copper-coated composite dimples and fractures of whiskers are more,but on the fracture surface of uncoated composite pull-out of whiskers are more than that on the coated one.In uncoated composite the fracture generally originates from the near-interface-region.
文摘Aluminum matrix composites(AMCs), reinforced with novel pre-synthesized Al/Cu Fe multi-layered coreshell particles, were fabricated by different consolidation techniques to investigate their effect on microstructure and mechanical properties. To synthesize multi-layered Al/Cu Fe core-shell particles, Cu and Fe layers were deposited on Al powder particles by galvanic replacement and electroless plating method, respectively. The core-shell powder and sintered compacts were characterized by using X-ray diffraction(XRD), scanning electron microscopy(SEM) equipped with energy dispersive spectroscopy(EDX), pycnometer, microhardness and compression tests. The results revealed that a higher extent of interfacial reactions, due to the transformation of the deposited layer into intermetallic phases in spark plasma sintered composite, resulted in high relative density(99.26%), microhardness(165 HV0.3) and strength(572 MPa). Further, the presence of un-transformed Cu in the shell structure of hot-pressed composite resulted in the highest fracture strain(20.4%). The obtained results provide stronger implications for tailoring the microstructure of AMCs through selecting appropriate sintering paths to control mechanical properties.
基金supported by the National Science Foundation of China(No.51274038)
文摘Cu/Al composites are of vital importance in industrial applications because of their numerous advantages. The influence of bond-ing temperature and cooling rate on the microstructure and morphology of Cu/Al composites was investigated in this paper. The interfacial morphology and constituent phases at the Cu/Al interface were analyzed by optical microscopy and field-emission scanning electron mi-croscopy equipped with energy-dispersive X-ray spectroscopy. The results indicate that effective Cu-Al bonding requires a higher bonding temperature to facilitate interdiffusion between the two metals. The microstructural characteristics are associated with various bonding tem-peratures, which impact the driving force of interdiffusion. It is observed that cooling rate exerts a significant influence on the morphology and amount of the intermetallic compounds at the interfacial region. Meanwhile, microhardness measurements show that hardness varies with the bonding temperature and rate of cooling.
文摘An Al_2O_(3f)/Al-4.5Cu composite was made by squeeze casting. The solutesegregation in the composite at different cooling rates was studied. The results indicate that theprimary crystal of Al-4.5Cu alloy nucleates and grows in the interstice between fibers. The fibersurface cannot serve as site for the heterogeneous nucleation of a primary dendrite. There exists anincreasing Cu concentration gradient from the center of the interstice between fibers to theinterface or the grain boundaries. There are the eutectic phases around the fibers. The solutesegregation in the matrix increases with the cooling rate rising. The amount of eutectic phasesfollowed by imbalance crystalline can be numerically calculated with Clyne-Kurz formula.
基金financially supported by the Research Fund for the Doctoral Program of Higher Education of China(No.20100006120020)
文摘Copper-coated aluminum wires exhibit good electrical conductivity, high thermal conductivity, low contact resistance of copper and low density, and provide economic advantages over aluminum. However, there are some problems in the manufacring processes of hot-dip copper-coated aluminum wires, such as the difficulties in controlling coating process. In this work, the hot-dip copper-coating method of aluminum wires was investigated for producing copper-coated aluminum wire composites. The interface microstructure between the aluminum wire and the copper coating layer was analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spec- trometry (EDS). Five different fluxing agents were tested. Experimental results show that appropriate conditions for the hot-dip process are determined as the liquid copper temperature of 1085℃ and the treatment time less than 1 s. A success in hot-dip copper-coated aluminum wires is achieved by hot-dipping a low-melting-point metal into a high-melting-point metal liquid, which is significant for the further devel- opment and application of copper-coated aluminum wire composites.
基金Project(204AA335010) supported by the National High-Tech Research and Development Program of China
文摘The different copper coatings with thickness varying from 0.3μm to 1.5μm were deposited on carbon fibers using either electroless plating or electroplating method. The coated fibers were chopped and composites were fabricated with melting aluminum at 700℃. The effect of the copper layer on the microstructure in the system was discussed. The results show that the copper layer has fully reacted with aluminum matrix, and the intermetallic compound CuAl2 forms through SEM observation and XRD, EDX analysis. The results of tensile tests indicate that composites fabricated using carbon fibers with 0.7-1.1μm copper coating perform best and the composites turn to more brittle as the thickness of copper coating increases. The fracture surface observation exhibits good interface bonding and ductility of the matrix alloy when the thickness of copper coating is about 0.7-1.1μm.
文摘The tribological performance of the sliding bearings which are probably made of polymers, which is subjected to magnetic field, is of great intense. The wear of epoxy composites filled by metallic particles such as iron, copper and aluminum scratched by steel indenter is investigated. The wear scar width of the scratch was measured by an optical microscope. It was found that wear displayed by the scratch of epoxy filled by the metallic filling materials such as iron, copper and aluminum increased with increasing applied load. As the content of the metallic filling materials increased, wear slightly increased due to the reduction in cohesive stress inside the matrix as well as the epoxy transfer into the indenter surface might be responsible for that behavior. For epoxy filled by iron, when the magnetic field was applied to the contact area wear significantly decreased. Increasing the intensity of the magnetic field showed slight wear increase. Wear displayed by the scratch of epoxy filled by copper showed higher values than that observed for copper filled epoxy. Presence of the magnetic field might generate electric current at the contact area leading to an increase in the intensity of the electric static charge. Moreover, wear of epoxy filled by aluminum showed lower values than that observed for epoxy composites filled by copper and higher than that displayed by iron filled epoxy composites. Under the effect of magnetic field, wear significantly increased. This behavior could explained on the basis that the presence of magnetic field accompanied by the movement of the indenter in the epoxy composites generated electric current passing through the steel indenter which caused softening of the epoxy composites. In that condition removal of epoxy from the wear track was easier and epoxy transfer into the steel indenter was accelerated.