Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other wor...Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other words,the PbI2 content in the precursor and as formed film will affect the efficiency and stability of the PSCs.With moderate residual PbI2,it passivates the bulk/surface defects of perovskite,reduces the interfacial recombination,promotes the perovskite stability,minimizes the device hysteresis,and so on.Deficient PbI2 residue will reduce the interfacial passivation effect and device performance.In addition to facilitating the non-radiative recombination,over PbI2 residue can also lead to electronic insulation in the grain boundary and deteriorate the device performance.However,the impact and regulation of PbI2 residue on the device performance and stability is still not fully understood.Herein,a comprehensive and detailed review is presented by discussing the PbI2 residue impact and its regulation strategies(i.e., elimination,facilitation and conversion of the residue PbI2) to manipulate the PbI2 content,distribution and forms.Finally,we also show future outlooks in this field,with an aim to help further the progression of high-efficiency and stable PSCs.展开更多
A novel and effective protocol has been developed for the Ullmann-type C--N coupling reaction catalyzed by calix[4]arene supported amino acid ionic liquid and copper(I) iodide in water under microwave irradiation co...A novel and effective protocol has been developed for the Ullmann-type C--N coupling reaction catalyzed by calix[4]arene supported amino acid ionic liquid and copper(I) iodide in water under microwave irradiation condition The protocol uses ealix[4]arene supported amino acid ionic liquid as double function of the ligand and phase-transfer catalyst, and shows good tolerance in good to excellent yields.展开更多
The morphology of the copper iodide (CuI) film as an inorganic p-type material has an important influence on enhancing the performance of polymer solar cells (PSCs). A self-assembled monolayer of 3-aminopropanoic ...The morphology of the copper iodide (CuI) film as an inorganic p-type material has an important influence on enhancing the performance of polymer solar cells (PSCs). A self-assembled monolayer of 3-aminopropanoic acid (C3-SAM) was used on the surface of indium tin oxide (ITO) before depositing the CuI films. Consequently, a well-distributed and smooth CuI film was formed with pinhole free and complete surface coverage. The root mean square of the corresponding CuI film was reduced from 3.63 nm for ITO/CuI to 0.77 nm. As a result, the average power conversion efficiency (PCE) of PSCs with the device structure of ITO/C3-SAM/CuI/P3HT:PC61BM/ZnO/Al increased significantly from 2.55% (best 2.66%) to 3.04% (best 3.20%) after C3-SAM treatment. This work provides an effective strategy to control the morphology of CuI films through interracial modification and promotes its application in efficient PSCs.展开更多
A new coordination compound, [(CuI)(Btd)]n (1, Btd = 2,1,3-benzothiadiazole), was obtained at room temperature by the reaction of 2,1,3-benzothiadiazole with CuI and KI saturated aqueous solution. It was charact...A new coordination compound, [(CuI)(Btd)]n (1, Btd = 2,1,3-benzothiadiazole), was obtained at room temperature by the reaction of 2,1,3-benzothiadiazole with CuI and KI saturated aqueous solution. It was characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction analysis and photoluminescence. The complex crystallizes in the triclinic Pi space group, with a = 4.1620(6), b = 10.4590(15), c = 10.5052(15) A, a = 69.310(2), β = 83.608(2), γ = 78.873(2)°, V = 419.30(10) A3, Z = 2, C6H4N2SCuI, Mr = 326.61, Dc = 2.587 g/cm^3, F(000) = 304 and/^(MoKa) = 6.464 mm-1. The final R = 0.0418 and wR = 0.0936 for 1451 observed reflections with 1 〉 2σ(I) and R = 0.0422 and wR = 0.0939 for all data. In the complex, the Cu atoms are coordinated by one nitrogen atom and three iodine atoms to form a double-stranded stair, and such stairs are further linked to build a 2D framework via C-H…I interactions.展开更多
Copper is an essential trace element,and plays a vital role in numerous physiological processes within the human body.During normal metabolism,the human body maintains copper homeostasis.Copper deficiency or excess ca...Copper is an essential trace element,and plays a vital role in numerous physiological processes within the human body.During normal metabolism,the human body maintains copper homeostasis.Copper deficiency or excess can adversely affect cellular function.Therefore,copper homeostasis is stringently regulated.Recent studies suggest that copper can trigger a specific form of cell death,namely,cuproptosis,which is triggered by excessive levels of intracellular copper.Cuproptosis induces the aggregation of mitochondrial lipoylated proteins,and the loss of iron-sulfur cluster proteins.In neurodegenerative diseases,the pathogenesis and progression of neurological disorders are linked to copper homeostasis.This review summarizes the advances in copper homeostasis and cuproptosis in the nervous system and neurodegenerative diseases.This offers research perspectives that provide new insights into the targeted treatment of neurodegenerative diseases based on cuproptosis.展开更多
The title compound,[Cu4I4(C4H8N4)4],has been synthesized and characterized by single-crystal X-ray diffraction analysis.It crystallizes in monoclinic,space group Pbca,with a=18.1851(10),b=9.3697(5),c=19.8034(10...The title compound,[Cu4I4(C4H8N4)4],has been synthesized and characterized by single-crystal X-ray diffraction analysis.It crystallizes in monoclinic,space group Pbca,with a=18.1851(10),b=9.3697(5),c=19.8034(10)A,V=3374.3(3)A^3,C16H32Cu4I4N16,Mr=1210.34,Z=4,Dc=2.383 g/cm^3,μ=6.183 mm^-1,F(000)=2272,S=1.032,the final R=0.0309 and wR=0.1180 for 3854 observer reflections(I〉2σ(I)).The structure of the title compound consists of tetranuclear copper cluster units bridged by the halogen atoms with the 3,5-dimethyl-4-aminotriazole ligands coordinated to the metal ions through the triazole nitrogen atoms.The luminescent property of 1 was also studied.展开更多
As an inorganic chemical,magnesium iodide has a significant crystalline structure.It is a complex and multifunctional substance that has the potential to be used in a wide range of medical advancements.Molecular graph...As an inorganic chemical,magnesium iodide has a significant crystalline structure.It is a complex and multifunctional substance that has the potential to be used in a wide range of medical advancements.Molecular graph theory,on the other hand,provides a sufficient and cost-effective method of investigating chemical structures and networks.M-polynomial is a relatively new method for studying chemical networks and structures in molecular graph theory.It displays numerical descriptors in algebraic form and highlights molecular features in the form of a polynomial function.We present a polynomials display of magnesium iodide structure and calculate several M-polynomials in this paper,particularly the M-polynomials of the augmented Zagreb index,inverse sum index,hyper Zagreb index and for the symmetric division index.展开更多
Oxygen evolution reaction(OER)as a half-anodic reaction of water splitting hinders the overall reaction efficiency owing to its thermodynamic and kinetic limitations.Iodide oxidation reaction(IOR)with low thermodynami...Oxygen evolution reaction(OER)as a half-anodic reaction of water splitting hinders the overall reaction efficiency owing to its thermodynamic and kinetic limitations.Iodide oxidation reaction(IOR)with low thermodynamic barrier and rapid reaction kinetics is a promising alternative to the OER.Herein,we present a molybdenum disulfide(MoS_(2))electrocatalyst for a high-efficiency and remarkably durable anode enabling IOR.MoS_(2)nanosheets deposited on a porous carbon paper via atomic layer deposition show an IOR current density of 10 mA cm^(–2)at an anodic potential of 0.63 V with respect to the reversible hydrogen electrode owing to the porous substrate as well as the intrinsic iodide oxidation capability of MoS_(2)as confirmed by theoretical calculations.The lower positive potential applied to the MoS_(2)-based heterostructure during IOR electrocatalysis prevents deterioration of the active sites on MoS_(2),resulting in exceptional durability of 200 h.Subsequently,we fabricate a two-electrode system comprising a MoS_(2)anode for IOR combined with a commercial Pt@C catalyst cathode for hydrogen evolution reaction.Moreover,the photovoltaic–electrochemical hydrogen production device comprising this electrolyzer and a single perovskite photovoltaic cell shows a record-high current density of 21 mA cm^(–2)at 1 sun under unbiased conditions.展开更多
Functionalized alkylzinc iodides will undergo 1,4-conjugation reaction with derivatives of β-nitrostyrene in the presence of Cu(OAc)2/LiCl to afford a polyfunctional nitro-compound in high yield.
Development of tin(Sn)-based perovskite solar cells(PSCs)largely lags behind that of lead counterparts due to fast crystallization process of Sn perovskite and numerous defects in both bulk and surface of Sn perovskit...Development of tin(Sn)-based perovskite solar cells(PSCs)largely lags behind that of lead counterparts due to fast crystallization process of Sn perovskite and numerous defects in both bulk and surface of Sn perovskite films.Herein,this work reports a facile strategy of introducing 4-fluorobenzylammonium iodide(FBZAI)as additives into Sn perovskite precursor to synergistically modulate the roles of benzylamine and fluorine in Sn-based PSCs.Incorporation of FBZAI can increase crystallinity,passivate defects,and inhibit the oxidation of Sn^(2+),leading to suppression of nonradiative recombination and enhancement of charge transport and collection in devices.As a result,the best-performing Sn-based PSC with the FBZAI additive achieves the maximum PCE of 13.85%with the enhanced fill factor of 77.8%and open-circuit voltage of 0.778 V.Our unencapsulated device exhibits good stability by maintaining 95%of its initial PCE after 160 days of storage.展开更多
All-inorganic CsPbI_(3) perovskite has attracted wide attention due to its desirable optical bandgap(Eg:∼1.7 eV)as well as high chemical stability.Nevertheless,the photovoltaic performance of CsPbI_(3) perovskite sol...All-inorganic CsPbI_(3) perovskite has attracted wide attention due to its desirable optical bandgap(Eg:∼1.7 eV)as well as high chemical stability.Nevertheless,the photovoltaic performance of CsPbI_(3) perovskite solar cells(PSCs)was limited by severe nonradiative charge recombination due to high defect density at the grain boundary and surface of perovskitefilms.To address this issue,a pyrrolidinium iodide(PyI)molecule was introduced to modify the surface and grain boundary of CsPbI_(3) perovskitefilms to passivate defects,which improves the quality of CsPbI_(3) perovskitefilms as well as induces the generation of a quasi-2D Py_(2)CsPb_(2)I_(7) capping layer between per-ovskite layer and hole transport layer.Such quasi-2D Py_(2)CsPb_(2)I_(7) capping layer optimizes interface contact between CsPbI_(3) perovskite layer and hole transport layer and blocks the electron transfer from CsPbI_(3) perovskite photoactive layer to the hole transport layer.As a result,the performance of CsPbI_(3) PSCs is well improved to 17.87%for power conversion efficiency(PCE)with an ultra-high fill factor(FF)of 0.84.In addition,the PyI mole-cule modified CsPbI_(3) perovskite devices exhibit excellent stability,which remains its initial PCE almost unchanged after aging for 35 days under the dry air atmosphere(temperature:20℃–30℃,control relative humid-ity(RH):<10%).展开更多
Copper,as an essential trace nutrient,plays a crucial role in biological processes such as mitochondrial respiration,antioxidant stress response,and the synthesis of biomolecules.Typically,cellular copper concentratio...Copper,as an essential trace nutrient,plays a crucial role in biological processes such as mitochondrial respiration,antioxidant stress response,and the synthesis of biomolecules.Typically,cellular copper concentrations are maintained at very low levels,a pattern also observed in cancer cells to prevent adverse consequences of copper overload,such as cuproptosis.This involves copper dependency,accumulation of lipidated proteins,and a reduction in Fe-S cluster proteins[1].Various neurodegenerative diseases are associated with imbalances in copper homeostasis.展开更多
The precise measurement of Al, Mg, Ca, and Zn composition in copper slag is crucial for effective process control of copper pyrometallurgy. In this study, a remote laser-induced breakdown spectroscopy(LIBS) system was...The precise measurement of Al, Mg, Ca, and Zn composition in copper slag is crucial for effective process control of copper pyrometallurgy. In this study, a remote laser-induced breakdown spectroscopy(LIBS) system was utilized for the spectral analysis of copper slag samples at a distance of 2.5 m. The composition of copper slag was then analyzed using both the calibration curve(CC) method and the partial least squares regression(PLSR) analysis method based on the characteristic spectral intensity ratio. The performance of the two analysis methods was gauged through the determination coefficient(R^(2)), average relative error(ARE), root mean square error of calibration(RMSEC), and root mean square error of prediction(RMSEP). The results demonstrate that the PLSR method significantly improved both R^(2) for the calibration and test sets while reducing ARE, RMSEC, and RMSEP by 50% compared to the CC method. The results suggest that the combination of LIBS and PLSR is a viable approach for effectively detecting the elemental concentration in copper slag and holds potential for online detection of the elemental composition of high-temperature molten copper slag.展开更多
An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calcula...An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calculations and confirmed through high-temperature experiments.The recovery rate of copper can reach 90.13%under the optimal conditions of 1200°C,an iron to silicon mass ratio of 1.0,3 wt.%ferrous sulfide,and a duration of 45 min.Lead(54.07 wt.%)and zinc(17.42 wt.%)are found in the flue dust as lead sulfate,lead sulfide,and zinc oxide,while copper matte contains lead(14.44 wt.%)and zinc sulfide(1.29 wt.%).The remaining lead and zinc are encapsulated as oxides within the fayalite phase.展开更多
We investigated the relationship between oxygen reduction reaction(ORR)activity and the pyrolysis temperature(650-850℃)of CuPc in alkaline solution.The highly active sites were formed through the decomposition of CuP...We investigated the relationship between oxygen reduction reaction(ORR)activity and the pyrolysis temperature(650-850℃)of CuPc in alkaline solution.The highly active sites were formed through the decomposition of CuPc or Cu-N_(4) structure after releasing 4-nitrophthalonitrile.Cu-Nx incorporated with carbon were the main active sites.The XPS measurement results show that,at lower temperature,the contents of pyridinic-N and pyrrolic-N account for the most of the total N.As the temperature is higher than 750℃,the content of graphitic N(26.11%)increases and pyridinic-N(58.81%)becomes the dominant specie.When the temperature is higher than 850℃,the content of graphitic N increases remarkably and becomes the dominant species.Moreover,the specific surface areas decrease with increased pyrolysis temperature.Benefiting from the synergistic effect,the pyrolysis temperature at 750℃of CuPc displays superior electrocatalytic properties.The obtained results reveal that the fabricated non-noble metal catalysts can be used as low-cost,efficient catalyst for water splitting ORR in metal-air batteries and fuel cells.展开更多
The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays a...The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper(Ⅱ) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases(such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions.展开更多
High-purity copper(Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current puri...High-purity copper(Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current purification process is mainly based on the zone/electrolytic refining or anion exchange, however, which excessively relies on specific integrated equipment with ultra-high vacuum or chemical solution environment, and is also bothered by external contaminants and energy consumption. Here we report a simple approach to purify the Cu foils from 99.9%(3N) to 99.99%(4N) by a temperature-gradient thermal annealing technique, accompanied by the kinetic evolution of single crystallization of Cu.The success of purification mainly relies on(i) the segregation of elements with low effective distribution coefficient driven by grain-boundary movements and(ii) the high-temperature evaporation of elements with high saturated vapor pressure.The purified Cu foils display higher flexibility(elongation of 70%) and electrical conductivity(104% IACS) than that of the original commercial rolled Cu foils(elongation of 10%, electrical conductivity of ~ 100% IACS). Our results provide an effective strategy to optimize the as-produced metal medium, and therefore will facilitate the potential applications of Cu foils in precision electronic products and high-frequency printed circuit boards.展开更多
Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator inv...Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator involved in uptake and transport of Cu via activation of OsCOPT2 and OsHMA expression.OsMYB84 was highly expressed in roots and anthers and induced by Cu.Overexpression of OsMYB84 promoted uptake and root-to-shoot translocation of Cu in rice,facilitated Cu distribution into grain and increased grain yield.In contrast,mutation of OsMYB84 reduced Cu concentration in xylem sap.OsMYB84 bound to the promoter region of OsCOPT2 and OsHMA5 and upregulated their expression.OsCOPT2 mutants showed reduced uptake of Cu and OsHMA5 overexpression lines showed increased root-to-shoot translocation of Cu.展开更多
The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains...The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains poor.By adding additives,the decomposition temperature can be further reduced and PG decomposition rate and product yield can be improved.However,the use of current additives such as Fe_(2)O_(3)and SiO_(2)brings the problem of increasing economic cost.Therefore,it is proposed to use solid waste copper slag(CS)as a new additive to reduce PG to prepare SO2,which can reduce the cost and meet the environmental benefits at the same time.The effects of proportion,temperature and thermostatic time on PG decomposition are investigated by experimental and kinetic analysis combined with FactSage thermodynamic calculations to optimize the roasting conditions.Finally,the reaction mechanism is proposed.It is found that adding CS to the coke and PG system can increase the rate of PG decomposition and SO_(2)yield while lowering the PG decomposition temperature.For example,when the CS/PG mass ratio increases from 0 to 1,PG decomposition rate increases from 83.38%to 99.35%,SO_(2)yield increases from 78.62%to 96.81%,and PG decomposition temperature decreases from 992.4℃to 949.6℃.The optimal reaction parameters are CS/PG mass ratio of 1,Coke/PG mass ratio of 0.06 at 1100℃for 20 min with 99.35%PG decomposition rate and 96.81%SO_(2) yield.The process proceeds according to the following reactions:2CaSO_(4)+ 0.7C + 0.8Fe_(2)SiO_(4)→0.8Ca_(2)SiO_(4)+ 0.2Ca_(2)Fe_(2)O_(5)+ 0.4Fe_(3)O_(4)+2SO_(2)+ 0.7CO_(2)Finally,a process for decomposing PG with coke and CS is proposed.展开更多
Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a...Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a practical ingredient plan,which should exhibit long duration time with sufficient utilization and feeding stability for real applications,an ingredient plan optimization model is proposed in this study to effectively guarantee continuous production and stable furnace conditions.To address the complex challenges posed by this integer programming model,including multiple coupling feeding stages,intricate constraints,and significant non-linearity,a multi-stage differential-multifactorial evolution algorithm is developed.In the proposed algorithm,the differential evolutionary(DE)algorithm is improved in three aspects to efficiently tackle challenges when optimizing the proposed model.First,unlike traditional time-consuming serial approaches,the multifactorial evolutionary algorithm is utilized to optimize multiple complex models contained in the population of evolutionary algorithm caused by the feeding stability in a parallel manner.Second,a repair algorithm is employed to adjust infeasible ingredient lists in a timely manner.In addition,a local search strategy taking feedback from the current optima and considering the different positions of global optimum is developed to avoiding premature convergence of the differential evolutionary algorithm.Finally,the simulation experiments considering different planning horizons using real data from the copper industry in China are conducted,which demonstrates the superiority of the proposed method on feeding duration and stability compared with other commonly deployed approaches.It is practically helpful for reducing material cost as well as increasing production profit for the copper industry.展开更多
基金financially supported by the National Natural Science Foundation of China(U21A2078,22179042,and 12104170)the Natural Science Foundation of Fujian Province(2020J06021 and 2020J01064)Scientific Research Funds of Huaqiao University(23BS109)。
文摘Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other words,the PbI2 content in the precursor and as formed film will affect the efficiency and stability of the PSCs.With moderate residual PbI2,it passivates the bulk/surface defects of perovskite,reduces the interfacial recombination,promotes the perovskite stability,minimizes the device hysteresis,and so on.Deficient PbI2 residue will reduce the interfacial passivation effect and device performance.In addition to facilitating the non-radiative recombination,over PbI2 residue can also lead to electronic insulation in the grain boundary and deteriorate the device performance.However,the impact and regulation of PbI2 residue on the device performance and stability is still not fully understood.Herein,a comprehensive and detailed review is presented by discussing the PbI2 residue impact and its regulation strategies(i.e., elimination,facilitation and conversion of the residue PbI2) to manipulate the PbI2 content,distribution and forms.Finally,we also show future outlooks in this field,with an aim to help further the progression of high-efficiency and stable PSCs.
基金We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 21176222).
文摘A novel and effective protocol has been developed for the Ullmann-type C--N coupling reaction catalyzed by calix[4]arene supported amino acid ionic liquid and copper(I) iodide in water under microwave irradiation condition The protocol uses ealix[4]arene supported amino acid ionic liquid as double function of the ligand and phase-transfer catalyst, and shows good tolerance in good to excellent yields.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61377065 and 61574064)the Science and Technology Planning Project of Guangdong Province,China(Grant Nos.2013CB040402009 and 2015B010132009)the Science and Technology Project of Guangzhou City,China(Grant No.2014J4100056)
文摘The morphology of the copper iodide (CuI) film as an inorganic p-type material has an important influence on enhancing the performance of polymer solar cells (PSCs). A self-assembled monolayer of 3-aminopropanoic acid (C3-SAM) was used on the surface of indium tin oxide (ITO) before depositing the CuI films. Consequently, a well-distributed and smooth CuI film was formed with pinhole free and complete surface coverage. The root mean square of the corresponding CuI film was reduced from 3.63 nm for ITO/CuI to 0.77 nm. As a result, the average power conversion efficiency (PCE) of PSCs with the device structure of ITO/C3-SAM/CuI/P3HT:PC61BM/ZnO/Al increased significantly from 2.55% (best 2.66%) to 3.04% (best 3.20%) after C3-SAM treatment. This work provides an effective strategy to control the morphology of CuI films through interracial modification and promotes its application in efficient PSCs.
基金Supported by the National Natural Science Foundation of China (61205184)the Department of Education of Zhejiang Province (Y201122207)+1 种基金Open Foundation of Zhejiang Provincial Top Key Academic Discipline of Applied Chemistry and Eco-Dyeing & Finishing Engineering (YR2012013)the Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Applied Chemistry and Eco-Dyeing & Finishing Engineering (ZYG2012003)
文摘A new coordination compound, [(CuI)(Btd)]n (1, Btd = 2,1,3-benzothiadiazole), was obtained at room temperature by the reaction of 2,1,3-benzothiadiazole with CuI and KI saturated aqueous solution. It was characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction analysis and photoluminescence. The complex crystallizes in the triclinic Pi space group, with a = 4.1620(6), b = 10.4590(15), c = 10.5052(15) A, a = 69.310(2), β = 83.608(2), γ = 78.873(2)°, V = 419.30(10) A3, Z = 2, C6H4N2SCuI, Mr = 326.61, Dc = 2.587 g/cm^3, F(000) = 304 and/^(MoKa) = 6.464 mm-1. The final R = 0.0418 and wR = 0.0936 for 1451 observed reflections with 1 〉 2σ(I) and R = 0.0422 and wR = 0.0939 for all data. In the complex, the Cu atoms are coordinated by one nitrogen atom and three iodine atoms to form a double-stranded stair, and such stairs are further linked to build a 2D framework via C-H…I interactions.
基金supported by grants from the National Natural Science Foundation of China(No.81971891,No.82172196 and No.82372507)the Natural Science Foundation of Hunan Province(No.2023JJ40804)the Key Laboratory of Emergency and Trauma of Ministry of Education(Hainan Medical University,No.KLET-202210).
文摘Copper is an essential trace element,and plays a vital role in numerous physiological processes within the human body.During normal metabolism,the human body maintains copper homeostasis.Copper deficiency or excess can adversely affect cellular function.Therefore,copper homeostasis is stringently regulated.Recent studies suggest that copper can trigger a specific form of cell death,namely,cuproptosis,which is triggered by excessive levels of intracellular copper.Cuproptosis induces the aggregation of mitochondrial lipoylated proteins,and the loss of iron-sulfur cluster proteins.In neurodegenerative diseases,the pathogenesis and progression of neurological disorders are linked to copper homeostasis.This review summarizes the advances in copper homeostasis and cuproptosis in the nervous system and neurodegenerative diseases.This offers research perspectives that provide new insights into the targeted treatment of neurodegenerative diseases based on cuproptosis.
基金supported by the National Natural Science Foundation of China (20873150, 20821061, and 50772113)Chinese Academy of Sciences (KJCX2-YW-M05)+1 种基金the Natural Science Foundation of Fujian Province (2006F3135, 2006F3141, 2007HZ0001-1)the Fund of Fujian Key Laboratory of Nanomaterials (2006L2005)
文摘The title compound,[Cu4I4(C4H8N4)4],has been synthesized and characterized by single-crystal X-ray diffraction analysis.It crystallizes in monoclinic,space group Pbca,with a=18.1851(10),b=9.3697(5),c=19.8034(10)A,V=3374.3(3)A^3,C16H32Cu4I4N16,Mr=1210.34,Z=4,Dc=2.383 g/cm^3,μ=6.183 mm^-1,F(000)=2272,S=1.032,the final R=0.0309 and wR=0.1180 for 3854 observer reflections(I〉2σ(I)).The structure of the title compound consists of tetranuclear copper cluster units bridged by the halogen atoms with the 3,5-dimethyl-4-aminotriazole ligands coordinated to the metal ions through the triazole nitrogen atoms.The luminescent property of 1 was also studied.
文摘As an inorganic chemical,magnesium iodide has a significant crystalline structure.It is a complex and multifunctional substance that has the potential to be used in a wide range of medical advancements.Molecular graph theory,on the other hand,provides a sufficient and cost-effective method of investigating chemical structures and networks.M-polynomial is a relatively new method for studying chemical networks and structures in molecular graph theory.It displays numerical descriptors in algebraic form and highlights molecular features in the form of a polynomial function.We present a polynomials display of magnesium iodide structure and calculate several M-polynomials in this paper,particularly the M-polynomials of the augmented Zagreb index,inverse sum index,hyper Zagreb index and for the symmetric division index.
基金the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(Grant Nos.2021R1A3B10689202021M3H4A1A03049662)+1 种基金the Materials and Components Technology Development Program of MOTIE/KEIT(10080527)the Yonsei Signature Research Cluster Program of 2021(2021-22-0002)。
文摘Oxygen evolution reaction(OER)as a half-anodic reaction of water splitting hinders the overall reaction efficiency owing to its thermodynamic and kinetic limitations.Iodide oxidation reaction(IOR)with low thermodynamic barrier and rapid reaction kinetics is a promising alternative to the OER.Herein,we present a molybdenum disulfide(MoS_(2))electrocatalyst for a high-efficiency and remarkably durable anode enabling IOR.MoS_(2)nanosheets deposited on a porous carbon paper via atomic layer deposition show an IOR current density of 10 mA cm^(–2)at an anodic potential of 0.63 V with respect to the reversible hydrogen electrode owing to the porous substrate as well as the intrinsic iodide oxidation capability of MoS_(2)as confirmed by theoretical calculations.The lower positive potential applied to the MoS_(2)-based heterostructure during IOR electrocatalysis prevents deterioration of the active sites on MoS_(2),resulting in exceptional durability of 200 h.Subsequently,we fabricate a two-electrode system comprising a MoS_(2)anode for IOR combined with a commercial Pt@C catalyst cathode for hydrogen evolution reaction.Moreover,the photovoltaic–electrochemical hydrogen production device comprising this electrolyzer and a single perovskite photovoltaic cell shows a record-high current density of 21 mA cm^(–2)at 1 sun under unbiased conditions.
文摘Functionalized alkylzinc iodides will undergo 1,4-conjugation reaction with derivatives of β-nitrostyrene in the presence of Cu(OAc)2/LiCl to afford a polyfunctional nitro-compound in high yield.
基金supported by the National Natural Science Foundation of China(nos.62104163 and 62174112)the National Key Research and Development Program of China(no.2019YFE0120000)+3 种基金the Fundamental Research Funds for the Central Universities(nos.2021SCU12057 and YJ201955)the Science and Technology Program of Sichuan Province(no.2020JDJQ0030)the Natural Science Foundation of Sichuan Province(no.2022NSFSC1183)Engineering Featured Team Fund of Sichuan University(2020SCUNG102).
文摘Development of tin(Sn)-based perovskite solar cells(PSCs)largely lags behind that of lead counterparts due to fast crystallization process of Sn perovskite and numerous defects in both bulk and surface of Sn perovskite films.Herein,this work reports a facile strategy of introducing 4-fluorobenzylammonium iodide(FBZAI)as additives into Sn perovskite precursor to synergistically modulate the roles of benzylamine and fluorine in Sn-based PSCs.Incorporation of FBZAI can increase crystallinity,passivate defects,and inhibit the oxidation of Sn^(2+),leading to suppression of nonradiative recombination and enhancement of charge transport and collection in devices.As a result,the best-performing Sn-based PSC with the FBZAI additive achieves the maximum PCE of 13.85%with the enhanced fill factor of 77.8%and open-circuit voltage of 0.778 V.Our unencapsulated device exhibits good stability by maintaining 95%of its initial PCE after 160 days of storage.
基金National Natural Science Foundation of China,Grant No.21875013,H.N.ChenBeijing Natural Science Foundation,Grant No.2182031,H.N.Chen.
文摘All-inorganic CsPbI_(3) perovskite has attracted wide attention due to its desirable optical bandgap(Eg:∼1.7 eV)as well as high chemical stability.Nevertheless,the photovoltaic performance of CsPbI_(3) perovskite solar cells(PSCs)was limited by severe nonradiative charge recombination due to high defect density at the grain boundary and surface of perovskitefilms.To address this issue,a pyrrolidinium iodide(PyI)molecule was introduced to modify the surface and grain boundary of CsPbI_(3) perovskitefilms to passivate defects,which improves the quality of CsPbI_(3) perovskitefilms as well as induces the generation of a quasi-2D Py_(2)CsPb_(2)I_(7) capping layer between per-ovskite layer and hole transport layer.Such quasi-2D Py_(2)CsPb_(2)I_(7) capping layer optimizes interface contact between CsPbI_(3) perovskite layer and hole transport layer and blocks the electron transfer from CsPbI_(3) perovskite photoactive layer to the hole transport layer.As a result,the performance of CsPbI_(3) PSCs is well improved to 17.87%for power conversion efficiency(PCE)with an ultra-high fill factor(FF)of 0.84.In addition,the PyI mole-cule modified CsPbI_(3) perovskite devices exhibit excellent stability,which remains its initial PCE almost unchanged after aging for 35 days under the dry air atmosphere(temperature:20℃–30℃,control relative humid-ity(RH):<10%).
文摘Copper,as an essential trace nutrient,plays a crucial role in biological processes such as mitochondrial respiration,antioxidant stress response,and the synthesis of biomolecules.Typically,cellular copper concentrations are maintained at very low levels,a pattern also observed in cancer cells to prevent adverse consequences of copper overload,such as cuproptosis.This involves copper dependency,accumulation of lipidated proteins,and a reduction in Fe-S cluster proteins[1].Various neurodegenerative diseases are associated with imbalances in copper homeostasis.
基金supported by funding for research activities of postdoctoral researchers in Anhui Provincespecial funds for developing Anhui Province’s industrial “three highs” and high-tech industries。
文摘The precise measurement of Al, Mg, Ca, and Zn composition in copper slag is crucial for effective process control of copper pyrometallurgy. In this study, a remote laser-induced breakdown spectroscopy(LIBS) system was utilized for the spectral analysis of copper slag samples at a distance of 2.5 m. The composition of copper slag was then analyzed using both the calibration curve(CC) method and the partial least squares regression(PLSR) analysis method based on the characteristic spectral intensity ratio. The performance of the two analysis methods was gauged through the determination coefficient(R^(2)), average relative error(ARE), root mean square error of calibration(RMSEC), and root mean square error of prediction(RMSEP). The results demonstrate that the PLSR method significantly improved both R^(2) for the calibration and test sets while reducing ARE, RMSEC, and RMSEP by 50% compared to the CC method. The results suggest that the combination of LIBS and PLSR is a viable approach for effectively detecting the elemental concentration in copper slag and holds potential for online detection of the elemental composition of high-temperature molten copper slag.
基金supported by the Fundamental Research Funds for Central Universities,China(No.N2025004)the National Natural Science Foundation of China(Nos.U2102213,U1702253,52204419)+2 种基金Major Science and Technology Project of Liaoning Province,China(No.2021JH1/10400032)Major Science and Technology Project of Guangxi Province,China(No.2021AA12013)Liaoning Natural Science Foundation,China(No.2022-BS-076)。
文摘An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calculations and confirmed through high-temperature experiments.The recovery rate of copper can reach 90.13%under the optimal conditions of 1200°C,an iron to silicon mass ratio of 1.0,3 wt.%ferrous sulfide,and a duration of 45 min.Lead(54.07 wt.%)and zinc(17.42 wt.%)are found in the flue dust as lead sulfate,lead sulfide,and zinc oxide,while copper matte contains lead(14.44 wt.%)and zinc sulfide(1.29 wt.%).The remaining lead and zinc are encapsulated as oxides within the fayalite phase.
基金Funded by the National Natural Science Foundation of China(No.51521061)and“111”Project(No.B08040)。
文摘We investigated the relationship between oxygen reduction reaction(ORR)activity and the pyrolysis temperature(650-850℃)of CuPc in alkaline solution.The highly active sites were formed through the decomposition of CuPc or Cu-N_(4) structure after releasing 4-nitrophthalonitrile.Cu-Nx incorporated with carbon were the main active sites.The XPS measurement results show that,at lower temperature,the contents of pyridinic-N and pyrrolic-N account for the most of the total N.As the temperature is higher than 750℃,the content of graphitic N(26.11%)increases and pyridinic-N(58.81%)becomes the dominant specie.When the temperature is higher than 850℃,the content of graphitic N increases remarkably and becomes the dominant species.Moreover,the specific surface areas decrease with increased pyrolysis temperature.Benefiting from the synergistic effect,the pyrolysis temperature at 750℃of CuPc displays superior electrocatalytic properties.The obtained results reveal that the fabricated non-noble metal catalysts can be used as low-cost,efficient catalyst for water splitting ORR in metal-air batteries and fuel cells.
文摘The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper(Ⅱ) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases(such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions.
基金Project supported by the Basic and Applied Basic Research Foundation of Guangdong Province,China(Grant Nos.2019A1515110302 and 2022A1515140003)the Key Research and Development Program of Guangdong Province,China(Grant Nos.2020B010189001,2021B0301030002,2019B010931001,and 2018B030327001)+5 种基金the National Natural Science Foundation of China(Grant Nos.52172035,52025023,52322205,51991342,52021006,51991344,52100115,11888101,92163206,12104018,and 12274456)the National Key Research and Development Program of China(Grant Nos.2021YFB3200303,2022YFA1405600,2018YFA0703700,2021YFA1400201,and 2021YFA1400502)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000)the Pearl River Talent Recruitment Program of Guangdong Province,China(Grant No.2019ZT08C321)China Postdoctoral Science Foundation(Grant Nos.2020T130022 and 2020M680178)the Science and Technology Plan Project of Liaoning Province,China(Grant No.2021JH2/10100012).
文摘High-purity copper(Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current purification process is mainly based on the zone/electrolytic refining or anion exchange, however, which excessively relies on specific integrated equipment with ultra-high vacuum or chemical solution environment, and is also bothered by external contaminants and energy consumption. Here we report a simple approach to purify the Cu foils from 99.9%(3N) to 99.99%(4N) by a temperature-gradient thermal annealing technique, accompanied by the kinetic evolution of single crystallization of Cu.The success of purification mainly relies on(i) the segregation of elements with low effective distribution coefficient driven by grain-boundary movements and(ii) the high-temperature evaporation of elements with high saturated vapor pressure.The purified Cu foils display higher flexibility(elongation of 70%) and electrical conductivity(104% IACS) than that of the original commercial rolled Cu foils(elongation of 10%, electrical conductivity of ~ 100% IACS). Our results provide an effective strategy to optimize the as-produced metal medium, and therefore will facilitate the potential applications of Cu foils in precision electronic products and high-frequency printed circuit boards.
基金supported by grants from the National Key Research and Development Program of China(2021YFD1901203)。
文摘Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator involved in uptake and transport of Cu via activation of OsCOPT2 and OsHMA expression.OsMYB84 was highly expressed in roots and anthers and induced by Cu.Overexpression of OsMYB84 promoted uptake and root-to-shoot translocation of Cu in rice,facilitated Cu distribution into grain and increased grain yield.In contrast,mutation of OsMYB84 reduced Cu concentration in xylem sap.OsMYB84 bound to the promoter region of OsCOPT2 and OsHMA5 and upregulated their expression.OsCOPT2 mutants showed reduced uptake of Cu and OsHMA5 overexpression lines showed increased root-to-shoot translocation of Cu.
基金financial support from the school-enterprise cooperation projects(2019-KYY-508101-0078).
文摘The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains poor.By adding additives,the decomposition temperature can be further reduced and PG decomposition rate and product yield can be improved.However,the use of current additives such as Fe_(2)O_(3)and SiO_(2)brings the problem of increasing economic cost.Therefore,it is proposed to use solid waste copper slag(CS)as a new additive to reduce PG to prepare SO2,which can reduce the cost and meet the environmental benefits at the same time.The effects of proportion,temperature and thermostatic time on PG decomposition are investigated by experimental and kinetic analysis combined with FactSage thermodynamic calculations to optimize the roasting conditions.Finally,the reaction mechanism is proposed.It is found that adding CS to the coke and PG system can increase the rate of PG decomposition and SO_(2)yield while lowering the PG decomposition temperature.For example,when the CS/PG mass ratio increases from 0 to 1,PG decomposition rate increases from 83.38%to 99.35%,SO_(2)yield increases from 78.62%to 96.81%,and PG decomposition temperature decreases from 992.4℃to 949.6℃.The optimal reaction parameters are CS/PG mass ratio of 1,Coke/PG mass ratio of 0.06 at 1100℃for 20 min with 99.35%PG decomposition rate and 96.81%SO_(2) yield.The process proceeds according to the following reactions:2CaSO_(4)+ 0.7C + 0.8Fe_(2)SiO_(4)→0.8Ca_(2)SiO_(4)+ 0.2Ca_(2)Fe_(2)O_(5)+ 0.4Fe_(3)O_(4)+2SO_(2)+ 0.7CO_(2)Finally,a process for decomposing PG with coke and CS is proposed.
基金supported by the National Natural Science Foundation(61833003,62125302,U1908218).
文摘Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a practical ingredient plan,which should exhibit long duration time with sufficient utilization and feeding stability for real applications,an ingredient plan optimization model is proposed in this study to effectively guarantee continuous production and stable furnace conditions.To address the complex challenges posed by this integer programming model,including multiple coupling feeding stages,intricate constraints,and significant non-linearity,a multi-stage differential-multifactorial evolution algorithm is developed.In the proposed algorithm,the differential evolutionary(DE)algorithm is improved in three aspects to efficiently tackle challenges when optimizing the proposed model.First,unlike traditional time-consuming serial approaches,the multifactorial evolutionary algorithm is utilized to optimize multiple complex models contained in the population of evolutionary algorithm caused by the feeding stability in a parallel manner.Second,a repair algorithm is employed to adjust infeasible ingredient lists in a timely manner.In addition,a local search strategy taking feedback from the current optima and considering the different positions of global optimum is developed to avoiding premature convergence of the differential evolutionary algorithm.Finally,the simulation experiments considering different planning horizons using real data from the copper industry in China are conducted,which demonstrates the superiority of the proposed method on feeding duration and stability compared with other commonly deployed approaches.It is practically helpful for reducing material cost as well as increasing production profit for the copper industry.