Tourmaline from Altai mine in China's Sinkiang was used to remove lead (II), copper (II) from aqueous solution. The results demonstrate that tourmaline contains Na(Mg,V)3AI6(BO3)3Si6Ols (OH)4, NaFe3AI6(BO3...Tourmaline from Altai mine in China's Sinkiang was used to remove lead (II), copper (II) from aqueous solution. The results demonstrate that tourmaline contains Na(Mg,V)3AI6(BO3)3Si6Ols (OH)4, NaFe3AI6(BO3)3Si6Ols(OH)4. The data show that Tourmaline from Altai mine in China's Sinkiang can be used natural adsorbent for lead (II), copper (II).It is observed that the adsorption data fitted to the Langmuir isotherm. Furthermore, both Pb (II) and Cu (II) absorbed by tourmaline and tourmaline were characterized by X-ray diffraction, Laser Raman Spectrum, Fourier transform infrared spectroscopy, X-ray energy dispersive spectrometer, Transmission electron microscopy and Zeta potential.展开更多
The present work uses PEO solution to well disperse carbon fiber and identifies percolation thresholds of carbon fiber and carbon black which are used as conductive fillers.The resultant cathode plates have an average...The present work uses PEO solution to well disperse carbon fiber and identifies percolation thresholds of carbon fiber and carbon black which are used as conductive fillers.The resultant cathode plates have an average compressive strength of 27.3 MPa and flexural strength of 29.09 MPa,which demonstrate excellent mechanical properties.The Cu^(2+)removal efficiency was measured at different current densities in EC process with cement-based cathode plate,while the voltage changes were recorded.The results showed that the cement-based cathode plate operated stably and achieved 99.7%removal of 1 L of simulated wastewater with a Cu^(2+)concentration of 200 ppm at a current density of 8 m A/cm^(2)for 1 h.Characterization of floc and tested cathode plates,SEM and EDS analyses,and repeatability testing of the tested plates demonstrate the reusability of the plates,proving that cement-based plates can effectively replace metal cathode plates,reduce the cost of EC and improve the applicability of EC devices.展开更多
The title complex [Cu3L3(H2O)]DMFH2O (H2L = 4-(3-hydroxy-2-ethyl-4- pyridinone-1-yl)-aniline condensation salicylaldehyde) was obtained. The single-crystal X-ray study shows that it is a trinuclear compound [Cu3(C20H1...The title complex [Cu3L3(H2O)]DMFH2O (H2L = 4-(3-hydroxy-2-ethyl-4- pyridinone-1-yl)-aniline condensation salicylaldehyde) was obtained. The single-crystal X-ray study shows that it is a trinuclear compound [Cu3(C20H15N2O3)3(H2O)]DMFH2O. The coordi- nation sphere about each copper ion in the complex consists of two oxygen atoms from hydroxylpyridinone moiety of one ligand and one oxygen and one nitrogen atoms from salicyladehyde Schiff-base moiety of another ligand arranged in a slightly distorted square planar geometry. Among the three copper ions, one (Cu(2)) is coordinated by the other oxygen atom of water molecule on the fifth coordinate position to form a distorted square pyramid geometry. The crystal is of monoclinic, space group P21/c with a = 12.9202(5), b = 27.197(1), c = 17.0116(7) ? b = 100.588(1), V = 5875.9(4) 3, Z = 4, C63H57N7O12Cu3, Mr = 1294.78, Dc = 1.464 g/cm3, m = 1.146 mm-1, F(000) = 2668, R = 0.0784 and wR = 0.1546 for 6926 observed reflections with I > 2s(I). The differences of coordinate bond lengths are observed between anhydrous and hydrous units: in the former unit, the average bond lengths are 1.978 ?for CuN (azomethine), 1.883 ?for CuO (phenolic) in Schiff-base moiety, 1.959 ?for CuO (keto), and 1.919 ?for CuO (hydroxy) in hydroxypyridinone moiety; while those in the latter are longer with the following corresponding values: 1.985(5), 1.908(5), 1.993(5) and 1.919(4) ? respectively. The Cu(2)O (water) bond length is 2.375(6) ?展开更多
In this study, the adsorption behavior of copper(II) ions from aqueous solutions onto sesame husk (SH) was investigated. The effect of different parameters such as pH, contact time, adsorbent dosage, adsorbate concent...In this study, the adsorption behavior of copper(II) ions from aqueous solutions onto sesame husk (SH) was investigated. The effect of different parameters such as pH, contact time, adsorbent dosage, adsorbate concentration, temperature and agitation speed was studied. Thermodynamic parameters, equilibrium isotherms and kinetic data have been evaluated. The functional groups and surface morphology of SH adsorbent were characterized by FTIR and SEM. Adsorption equilibrium isotherms were expressed by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption models and it was found that Langmuir adsorption model fits the experimental data better than Freundlich and D-R models. The adsorption can be best described by the pseudo second-order kinetic model.展开更多
A discrete binuclear copper (II) complex containing Cu 2O 2 unit has been synthesized by the reaction of Cu (ClO 4) 2·6H 2O with 2 aminopyridine in the CH 3OH solution and characterized by X ray diffracti...A discrete binuclear copper (II) complex containing Cu 2O 2 unit has been synthesized by the reaction of Cu (ClO 4) 2·6H 2O with 2 aminopyridine in the CH 3OH solution and characterized by X ray diffraction study and IR spectroscopy. The crystal is monoclinic, space group: P2 1/n, with unit cell parameters: a=8.2952(2), b=18.4633(3), c=10.5049(2) . β=108.965(1)°, V=1521.56(5) 3, Z=2, C 22 H 30 N 8O 10 Cl 2Cu 2, M r =764.52, D c =1.669 Mg/m 3, F(000)=780, μ (Mo Kα )=8.60, T =293(2)K, final R=0.0623, wR =0.1536 for 2660 observed reflections with I>2.0σ(I ). The centrosymmetric complex Cu 2(CH 3O) 2(C 5H 6N 2) 4(ClO 4) 2 comprises a pair of Cu(II) atoms bridged by two methanoxo and N coordination 2 aminopyridine. The Cu(II)…Cu(II) distance is 3\^002(1).展开更多
Metal–metal battery bears great potential for next-generation large-scale energy storage system because of its simple manufacture process and low production cost.However,the cross-over of metal cations from the catho...Metal–metal battery bears great potential for next-generation large-scale energy storage system because of its simple manufacture process and low production cost.However,the cross-over of metal cations from the cathode to the anode causes a loss in capacity and influences battery stability.Herein,a coating of poly(ionic liquid)(PIL)with poly(diallyldimethylammonium bis(trifluoromethanesulfonyl)imide)(PDADMA^(+)TFSI^(−))on a commercial polypropylene(PP)separator serves as an anion exchange membrane for a 3.3 V copper–lithium battery.The PIL has a positively charged polymer backbone that can block the migration of copper ions,thus improving Coulombic efficiency,long-term cycling stability and inhibiting self-discharge of the battery.It can also facilitate the conduction of anions through the membrane and reduce polarization,especially for fast charging/discharging.Bruce-Vincent method gives the transport number in the electrolyte to be 0.25 and 0.04 for PP separator without and with PIL coating,respectively.This suggests that the PIL layer reduces the contribution of the internal current due to cation transport.The use of PIL as a coating layer for commercial PP separator is a cost-effective way to improve overall electrochemical performance of copper–lithium batteries.Compared to PP and polyacrylic acid(PAA)/PP separators,the PIL/PP membrane raises the Coulombic efficiency to 99%and decreases the average discharge voltage drop to about 0.09 V when the current density is increased from 0.1 to 1 mA cm^(−2).展开更多
The research results concerning continuous removal of phosphate (V) ions from solutions containing 1.0 or 0.20 mass % of phosphate (V) ions and 0.2 or 0.5 mg/kg of copper (II) ions using magnesium and ammonium ions ad...The research results concerning continuous removal of phosphate (V) ions from solutions containing 1.0 or 0.20 mass % of phosphate (V) ions and 0.2 or 0.5 mg/kg of copper (II) ions using magnesium and ammonium ions addition are presented. Continuous reaction crystallization of struvite MgNH4PO4 × 6H2O ran both under stoichiometric conditions and at 20% excess of magnesium ions (pH 9, t 900 s). It was concluded, that presence of copper (II) ions in a process system influenced product quality moderately advantageously. Mean size of struvite crystals enlarged by ca. 6% only. Lower concentration of phosphate (V) ions and excess of magnesium ions caused, that products of ca. 9% - 13% larger crystal mean size (up to ca.40mm) were removed from the crystallizer. Presence of struvite crystals and copper (II) hydroxide were detected analytically in the products (Cu in a product varied from 6 to 90 mg/kg). Presence of copper (II) ions favored crystallization of struvite in the form of tubular crystals.展开更多
Malachite is a common copper oxide mineral that is often enriched using the sulfidization-xanthate flotation method.Currently,the direct sulfidization method cannot yield copper concentrate products.Therefore,a new su...Malachite is a common copper oxide mineral that is often enriched using the sulfidization-xanthate flotation method.Currently,the direct sulfidization method cannot yield copper concentrate products.Therefore,a new sulfidization flotation process was developed to promote the efficient recovery of malachite.In this study,Cu^(2+) was used as an activator to interact with the sample surface and increase its reaction sites,thereby strengthening the mineral sulfidization process and reactivity.Compared to single copper ion activation,the flota-tion effect of malachite significantly increased after stepwise Cu^(2+) activation.Zeta potential,X-ray photoelectron spectroscopy(XPS),time-of-flight secondary ion mass spectroscopy(ToF-SIMS),scanning electron microscopy and energy dispersive spectrometry(SEM-EDS),and atomic force microscopy(AFM)analysis results indicated that the adsorption of S species was significantly enhanced on the mineral surface due to the increase in active Cu sites after Cu^(2+) stepwise activation.Meanwhile,the proportion of active Cu-S spe-cies also increased,further improving the reaction between the sample surface and subsequent collectors.Fourier-transform infrared spec-troscopy(FT-IR)and contact angle tests implied that the xanthate species were easily and stably adsorbed onto the mineral surface after Cu^(2+) stepwise activation,thereby improving the hydrophobicity of the mineral surface.Therefore,the copper sites on the malachite sur-face after Cu^(2+) stepwise activation promote the reactivity of the mineral surface and enhance sulfidization flotation of malachite.展开更多
The present study is aimed to examine the adsorption characteristics of Cu(II) by using the novel cellulose acetate composite and to apply it for the removal of Cu(II) from real wastewater samples. In order to achieve...The present study is aimed to examine the adsorption characteristics of Cu(II) by using the novel cellulose acetate composite and to apply it for the removal of Cu(II) from real wastewater samples. In order to achieve this objective, ethylenediamine, diethylenetriamine, triethylenetetramine and te-traethylenepentanene were used for immobilization of grafted cellulose acetate-nanoscale manganese dioxide. Cellulose was extracted from mangrove species Avicennia marina and converted to cellulose acetate then it was formed composite with nano-manganese dioxide via precipitation of nano-manganese dioxide on it. The composite was grafted with acrylamide monomer before immobilization. The synthesized compounds were used for adsorption of Cu(II) and characterized by FT-IR, TGA and SEM. The adsorption characteristics of synthesized sorbents were optimized. Langmuir and Freundlich models were used to establish sorption equilibria. The analytical applications of these modified materials were applied successfully for the removal of Cu(II).展开更多
t-Butyldimethylsilyl (TBDMS) ether can be cleaved upon refluxing in acetone/H2O (95 : 5) in the presence of a catalytic amount of copper (II) chloride dihydrate (5 mmol %).
Two homochiral metallosalen complexes, Ni(salen) (salen = (1R,2R)-(-)-diamino- cyclohexane-N,N′-bis(3-tert-butyl-5-(4′-benzoic acid)-salicylidene) 1 and Cu(salen) 2, have been synthesized and characteri...Two homochiral metallosalen complexes, Ni(salen) (salen = (1R,2R)-(-)-diamino- cyclohexane-N,N′-bis(3-tert-butyl-5-(4′-benzoic acid)-salicylidene) 1 and Cu(salen) 2, have been synthesized and characterized by IR, microanalysis, TGA, powder and single-crystal X-ray crystallography. Both 1 and 2 crystallize in orthorhombic space group P21212 with Z = 4. For 1, a = 12.082(2), b = 15.447(3), c = 18.784(4)A^°, V= 3505.7(12)A^°3, Mr = 731.50, Dc = 1.386 g/cm^3, μ = 0.606 mm^-1, F(000) = 1544, the final GOOF = 1.043, R = 0.0496 and wR = 0.1248 for 4791 observed reflections with I 〉 2σ(I). For 2, a = 12.181(2), b = 15.501(3), c = 18.877(4) A^°, V = 3564.3(12)A^°3, Mr = 736.33, Dc = 1.372 g/cm^3, μ = 0.665 mm^-1, F(000) = 1548, the final GOOF = 1.062, R = 0.0575 and wR = 0.1508 for 4562 observed reflections with I 〉 2σ(I). The crystal structures of 1 and 2 are isostructural with very similar supramolecular structures. An infinite two-dimensional network is generated by hydrogen bonding interactions and intermolecular π…π interactions.展开更多
The copper (II) complex (1) of a new Iigand 4- (quinolin-8-ylmethyl)- 1, 4, 7. 10-tetraazacycoltridecane-11. 13-dione (L) has been syntehsized and its crystal structure determined. It is of orthorhomic crystal system ...The copper (II) complex (1) of a new Iigand 4- (quinolin-8-ylmethyl)- 1, 4, 7. 10-tetraazacycoltridecane-11. 13-dione (L) has been syntehsized and its crystal structure determined. It is of orthorhomic crystal system and Pcad space group with a=16.260 (3), b=7. 739 (2). c=27. 530 (9) A, Mr=416. 97, Z=8. Dx=1. 595 g/cm3,μ=12. 876 cm-1, and F(000)=1736. The final R factor is 0. 061 for 2594 observed reflections with I>3σ(I). The Cu .atom is five coordinated to form a distorted square pyramid geometry in which N(11) of the pendant is at apical site.展开更多
The Schiff base, 4-[(2-methoxybenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrizol-3(2H)-one (SB), was used for the first time to adsorb copper(II) ions in aqueous solution. Various parameters such as initial pH, agita...The Schiff base, 4-[(2-methoxybenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrizol-3(2H)-one (SB), was used for the first time to adsorb copper(II) ions in aqueous solution. Various parameters such as initial pH, agitation period and different initial concentration of copper(II) ions which influenced the adsorption capacity were investigated. The equilibrium adsorption data for copper(II) ions were fitted to Langmuir, Freundlich and Dubinin-Radushkevish isotherm models. The maximum monolayer adsorption capacity of SB as obtained from Langmuir isotherm was 5.64 mg/g. Kinetic data correlated well with the pseudo second-order kinetic model indicating that chemical adsorption was the rate limiting step.展开更多
Here we demonstrate the synthesis of multifunctionalised benzimidazoles through the coupling of o-phenylenediamine with aldehydes by using Copper (II) hydroxide as an efficient solid catalyst in methanol at room tempe...Here we demonstrate the synthesis of multifunctionalised benzimidazoles through the coupling of o-phenylenediamine with aldehydes by using Copper (II) hydroxide as an efficient solid catalyst in methanol at room temperature. The Copper (II) hydroxide solid catalyst gave better yields (80%-99%) in short reaction time (4-8 h). These commercially available cheap catalysts are more active than many reported expensive heterogeneous catalysts. Using the Copper hydroxide fresh catalyst, the yield of product 3a was 98%, while the recovered catalyst in the three subsequent cycles gave the yield of 94%, 90% and 88% respectively.展开更多
The title complex [CuL3](ClO4)2·2H2O·2CH3CN (L = 1,10-phenanthroline-5,6-dione) has been synthesized and characterized by elemental analysis, conductivity, infrared and UV-Vis spectra. X-ray diffraction ...The title complex [CuL3](ClO4)2·2H2O·2CH3CN (L = 1,10-phenanthroline-5,6-dione) has been synthesized and characterized by elemental analysis, conductivity, infrared and UV-Vis spectra. X-ray diffraction analysis at room temperature indicates that the complex (C40H28Cl2CuN8O16, Mr = 1011.14) crystallizes in orthorhombic system, space group P212121 with a=13.983(1), b=14.310(1), c= 20\^890(2) , V = 4179.7(6) 3, Z = 4, Dc = 1.607 g/cm3, F(000) = 2026,μ(MoKα) = 0.736 mm-1. The final R and wR factors are 0.0446 and 0.1212 respectively with 8545 independent reflections. The title complex is composed of a discrete [CuL3]2+ cation, uncoordinated ClO4- anions, H2O and CH3CN molecules. The central Cu(II) atom is six-coordinated by six nitrogen donors of three ligands. The coordination geometry of Cu(II) could be considered as an approximately ideal octahedral configuration with little static Jahn-Teller distortion (the longest and shortest Cu-N bonds are 2.102 vs 2.139 with the mean length of 2.122 ), which is very rare for a six-coordinated Cu(II) complex.展开更多
Between all precursors of copper complex, bis-(acetylacetonato)-copper (II) and bis-oxalate copper (II) with very close structures are two of the best representatives for copper nanoparticles synthesis. In this resear...Between all precursors of copper complex, bis-(acetylacetonato)-copper (II) and bis-oxalate copper (II) with very close structures are two of the best representatives for copper nanoparticles synthesis. In this research, only bis-(acetylacetonato)-copper (II) in presence of some effective non-ionic surfactants such as Triton X-100, Dodecylamine, Tween 80 and also triphenylphosphine as a reducing agent via thermal decomposition process was used for copper nanopaticles synthesis. Two shif-base E19 and E22 complexes were also used for the investigation of these kinds of shif-base complexes capabilities by this method as precursors and all results were compared with each other. Between all surfactants, Triton X-100 gave the best yield with the largest grains. The techniques used for characterization of copper nanoparticles were TEM, EDX, FT-IR and XRD. TG-DTA and CV were used for characterization of bis-(acetylacetonato)-copper (II) complex.展开更多
Dibenzoyl peroxide undergoes oxidative addition on metallic copper with triphenylphosphine in a mixed solvent(acetone,dichloromethane and trichloromethane),and affords the binuclear copper complex (Cu(C_6H_5COO)_2(OPP...Dibenzoyl peroxide undergoes oxidative addition on metallic copper with triphenylphosphine in a mixed solvent(acetone,dichloromethane and trichloromethane),and affords the binuclear copper complex (Cu(C_6H_5COO)_2(OPPh_3))_2.Crystals are monoclinic,space group A_2/a,with cell parameters,a=24.337(3),b=10.566(1),c=21.579(2),β= 93.18(1)°, V=5540(1)~3,Z=4,R=0.042,and Rw=0.044 for 5872 observed reflections. Each copper ion is coordinated by four bridging benzoato ligands and one triphenylphosphine oxide group to form binuclear complexes.展开更多
The adsorption behaviors of copper ions on chalcopyrite surfaces were investigated based on zeta potential measurements, X-ray photoelectron spectroscopy, copper ion adsorption experiments, first-principles calculatio...The adsorption behaviors of copper ions on chalcopyrite surfaces were investigated based on zeta potential measurements, X-ray photoelectron spectroscopy, copper ion adsorption experiments, first-principles calculations, and Hallimond tube cell flotation experiments. The results show that copper ions activate the chalcopyrite as a result of the interactions between copper ions and sulfur on the chalcopyrite surface. This adsorption increases the flotation rate under certain conditions, and this is beneficial for the flotation of chalcopyrite. The copper ions in the flotation pulp are mainly derived from surface oxidation dissolution and the release of fluid inclusions, and these effects enable chalcopyrite to be activated.展开更多
The effects of copper ions and calcium ions on the depression of chlorite using CMC(carboxymethyl cellulose) as a depressant were studied through flotation tests,adsorption measurements,ζ potential tests and co-pre...The effects of copper ions and calcium ions on the depression of chlorite using CMC(carboxymethyl cellulose) as a depressant were studied through flotation tests,adsorption measurements,ζ potential tests and co-precipitation experiments.The results show that the electrostatic repulsion between the CMC molecules and the chlorite surfaces hinders the approach of the CMC to the chlorite while the presence of copper ions and calcium ions enhances the adsorption density of CMC.The action mechanisms of these two types of ions are different.Calcium ions can not adsorb onto the mineral surfaces,but they can interact with the CMC molecules,thus reducing the charge of the CMC and enhancing adsorption density.Copper ions can adsorb onto the mineral surfaces,which facilitates the CMC adsorption through acid/base interaction.The enhanced adsorption density is also attributed to the decreased electrostatic repulsion between the CMC and mineral surfaces as copper ions reduce the surface charge of both the mineral surfaces and the CMC molecules.展开更多
基金supported by the National Natural Science Foundation of China (No. 51004066)the Opening Project of the Key Laboratory for Advanced Building Materials of Sichuan Province (No. (No.09ZXXK09)Research Fund of Mianyang Normal University (No. 2011C03)
文摘Tourmaline from Altai mine in China's Sinkiang was used to remove lead (II), copper (II) from aqueous solution. The results demonstrate that tourmaline contains Na(Mg,V)3AI6(BO3)3Si6Ols (OH)4, NaFe3AI6(BO3)3Si6Ols(OH)4. The data show that Tourmaline from Altai mine in China's Sinkiang can be used natural adsorbent for lead (II), copper (II).It is observed that the adsorption data fitted to the Langmuir isotherm. Furthermore, both Pb (II) and Cu (II) absorbed by tourmaline and tourmaline were characterized by X-ray diffraction, Laser Raman Spectrum, Fourier transform infrared spectroscopy, X-ray energy dispersive spectrometer, Transmission electron microscopy and Zeta potential.
基金Funded by the National Natural Science Foundation of China (No.52078394)the Key Research and Development Program of Hubei Provincial (No.2020BAB081)。
文摘The present work uses PEO solution to well disperse carbon fiber and identifies percolation thresholds of carbon fiber and carbon black which are used as conductive fillers.The resultant cathode plates have an average compressive strength of 27.3 MPa and flexural strength of 29.09 MPa,which demonstrate excellent mechanical properties.The Cu^(2+)removal efficiency was measured at different current densities in EC process with cement-based cathode plate,while the voltage changes were recorded.The results showed that the cement-based cathode plate operated stably and achieved 99.7%removal of 1 L of simulated wastewater with a Cu^(2+)concentration of 200 ppm at a current density of 8 m A/cm^(2)for 1 h.Characterization of floc and tested cathode plates,SEM and EDS analyses,and repeatability testing of the tested plates demonstrate the reusability of the plates,proving that cement-based plates can effectively replace metal cathode plates,reduce the cost of EC and improve the applicability of EC devices.
基金This work was supported by the foundation of Natural Science Research of Jiangsu Education Department (02KJB150007)
文摘The title complex [Cu3L3(H2O)]DMFH2O (H2L = 4-(3-hydroxy-2-ethyl-4- pyridinone-1-yl)-aniline condensation salicylaldehyde) was obtained. The single-crystal X-ray study shows that it is a trinuclear compound [Cu3(C20H15N2O3)3(H2O)]DMFH2O. The coordi- nation sphere about each copper ion in the complex consists of two oxygen atoms from hydroxylpyridinone moiety of one ligand and one oxygen and one nitrogen atoms from salicyladehyde Schiff-base moiety of another ligand arranged in a slightly distorted square planar geometry. Among the three copper ions, one (Cu(2)) is coordinated by the other oxygen atom of water molecule on the fifth coordinate position to form a distorted square pyramid geometry. The crystal is of monoclinic, space group P21/c with a = 12.9202(5), b = 27.197(1), c = 17.0116(7) ? b = 100.588(1), V = 5875.9(4) 3, Z = 4, C63H57N7O12Cu3, Mr = 1294.78, Dc = 1.464 g/cm3, m = 1.146 mm-1, F(000) = 2668, R = 0.0784 and wR = 0.1546 for 6926 observed reflections with I > 2s(I). The differences of coordinate bond lengths are observed between anhydrous and hydrous units: in the former unit, the average bond lengths are 1.978 ?for CuN (azomethine), 1.883 ?for CuO (phenolic) in Schiff-base moiety, 1.959 ?for CuO (keto), and 1.919 ?for CuO (hydroxy) in hydroxypyridinone moiety; while those in the latter are longer with the following corresponding values: 1.985(5), 1.908(5), 1.993(5) and 1.919(4) ? respectively. The Cu(2)O (water) bond length is 2.375(6) ?
文摘In this study, the adsorption behavior of copper(II) ions from aqueous solutions onto sesame husk (SH) was investigated. The effect of different parameters such as pH, contact time, adsorbent dosage, adsorbate concentration, temperature and agitation speed was studied. Thermodynamic parameters, equilibrium isotherms and kinetic data have been evaluated. The functional groups and surface morphology of SH adsorbent were characterized by FTIR and SEM. Adsorption equilibrium isotherms were expressed by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption models and it was found that Langmuir adsorption model fits the experimental data better than Freundlich and D-R models. The adsorption can be best described by the pseudo second-order kinetic model.
文摘A discrete binuclear copper (II) complex containing Cu 2O 2 unit has been synthesized by the reaction of Cu (ClO 4) 2·6H 2O with 2 aminopyridine in the CH 3OH solution and characterized by X ray diffraction study and IR spectroscopy. The crystal is monoclinic, space group: P2 1/n, with unit cell parameters: a=8.2952(2), b=18.4633(3), c=10.5049(2) . β=108.965(1)°, V=1521.56(5) 3, Z=2, C 22 H 30 N 8O 10 Cl 2Cu 2, M r =764.52, D c =1.669 Mg/m 3, F(000)=780, μ (Mo Kα )=8.60, T =293(2)K, final R=0.0623, wR =0.1536 for 2660 observed reflections with I>2.0σ(I ). The centrosymmetric complex Cu 2(CH 3O) 2(C 5H 6N 2) 4(ClO 4) 2 comprises a pair of Cu(II) atoms bridged by two methanoxo and N coordination 2 aminopyridine. The Cu(II)…Cu(II) distance is 3\^002(1).
基金supported by grant from the Research Grants Council(City U 11305220)of the Hong Kong Special Administrative Region,China
文摘Metal–metal battery bears great potential for next-generation large-scale energy storage system because of its simple manufacture process and low production cost.However,the cross-over of metal cations from the cathode to the anode causes a loss in capacity and influences battery stability.Herein,a coating of poly(ionic liquid)(PIL)with poly(diallyldimethylammonium bis(trifluoromethanesulfonyl)imide)(PDADMA^(+)TFSI^(−))on a commercial polypropylene(PP)separator serves as an anion exchange membrane for a 3.3 V copper–lithium battery.The PIL has a positively charged polymer backbone that can block the migration of copper ions,thus improving Coulombic efficiency,long-term cycling stability and inhibiting self-discharge of the battery.It can also facilitate the conduction of anions through the membrane and reduce polarization,especially for fast charging/discharging.Bruce-Vincent method gives the transport number in the electrolyte to be 0.25 and 0.04 for PP separator without and with PIL coating,respectively.This suggests that the PIL layer reduces the contribution of the internal current due to cation transport.The use of PIL as a coating layer for commercial PP separator is a cost-effective way to improve overall electrochemical performance of copper–lithium batteries.Compared to PP and polyacrylic acid(PAA)/PP separators,the PIL/PP membrane raises the Coulombic efficiency to 99%and decreases the average discharge voltage drop to about 0.09 V when the current density is increased from 0.1 to 1 mA cm^(−2).
文摘The research results concerning continuous removal of phosphate (V) ions from solutions containing 1.0 or 0.20 mass % of phosphate (V) ions and 0.2 or 0.5 mg/kg of copper (II) ions using magnesium and ammonium ions addition are presented. Continuous reaction crystallization of struvite MgNH4PO4 × 6H2O ran both under stoichiometric conditions and at 20% excess of magnesium ions (pH 9, t 900 s). It was concluded, that presence of copper (II) ions in a process system influenced product quality moderately advantageously. Mean size of struvite crystals enlarged by ca. 6% only. Lower concentration of phosphate (V) ions and excess of magnesium ions caused, that products of ca. 9% - 13% larger crystal mean size (up to ca.40mm) were removed from the crystallizer. Presence of struvite crystals and copper (II) hydroxide were detected analytically in the products (Cu in a product varied from 6 to 90 mg/kg). Presence of copper (II) ions favored crystallization of struvite in the form of tubular crystals.
基金supported by Yunnan Fundamental Research Projects(No.202101BE070001-009)Yunnan Major Scientific and Technological Projects(No.202202AG050015)National Natural Science Foundation of China(No.51464029).
文摘Malachite is a common copper oxide mineral that is often enriched using the sulfidization-xanthate flotation method.Currently,the direct sulfidization method cannot yield copper concentrate products.Therefore,a new sulfidization flotation process was developed to promote the efficient recovery of malachite.In this study,Cu^(2+) was used as an activator to interact with the sample surface and increase its reaction sites,thereby strengthening the mineral sulfidization process and reactivity.Compared to single copper ion activation,the flota-tion effect of malachite significantly increased after stepwise Cu^(2+) activation.Zeta potential,X-ray photoelectron spectroscopy(XPS),time-of-flight secondary ion mass spectroscopy(ToF-SIMS),scanning electron microscopy and energy dispersive spectrometry(SEM-EDS),and atomic force microscopy(AFM)analysis results indicated that the adsorption of S species was significantly enhanced on the mineral surface due to the increase in active Cu sites after Cu^(2+) stepwise activation.Meanwhile,the proportion of active Cu-S spe-cies also increased,further improving the reaction between the sample surface and subsequent collectors.Fourier-transform infrared spec-troscopy(FT-IR)and contact angle tests implied that the xanthate species were easily and stably adsorbed onto the mineral surface after Cu^(2+) stepwise activation,thereby improving the hydrophobicity of the mineral surface.Therefore,the copper sites on the malachite sur-face after Cu^(2+) stepwise activation promote the reactivity of the mineral surface and enhance sulfidization flotation of malachite.
文摘The present study is aimed to examine the adsorption characteristics of Cu(II) by using the novel cellulose acetate composite and to apply it for the removal of Cu(II) from real wastewater samples. In order to achieve this objective, ethylenediamine, diethylenetriamine, triethylenetetramine and te-traethylenepentanene were used for immobilization of grafted cellulose acetate-nanoscale manganese dioxide. Cellulose was extracted from mangrove species Avicennia marina and converted to cellulose acetate then it was formed composite with nano-manganese dioxide via precipitation of nano-manganese dioxide on it. The composite was grafted with acrylamide monomer before immobilization. The synthesized compounds were used for adsorption of Cu(II) and characterized by FT-IR, TGA and SEM. The adsorption characteristics of synthesized sorbents were optimized. Langmuir and Freundlich models were used to establish sorption equilibria. The analytical applications of these modified materials were applied successfully for the removal of Cu(II).
基金Financial support by National Natural Science Foundation of China !(Grant No. 29972002) isgreatly acknowledged.
文摘t-Butyldimethylsilyl (TBDMS) ether can be cleaved upon refluxing in acetone/H2O (95 : 5) in the presence of a catalytic amount of copper (II) chloride dihydrate (5 mmol %).
基金supported by the Natural Science Foundation of Anhui Province (No. KJ2008B166)
文摘Two homochiral metallosalen complexes, Ni(salen) (salen = (1R,2R)-(-)-diamino- cyclohexane-N,N′-bis(3-tert-butyl-5-(4′-benzoic acid)-salicylidene) 1 and Cu(salen) 2, have been synthesized and characterized by IR, microanalysis, TGA, powder and single-crystal X-ray crystallography. Both 1 and 2 crystallize in orthorhombic space group P21212 with Z = 4. For 1, a = 12.082(2), b = 15.447(3), c = 18.784(4)A^°, V= 3505.7(12)A^°3, Mr = 731.50, Dc = 1.386 g/cm^3, μ = 0.606 mm^-1, F(000) = 1544, the final GOOF = 1.043, R = 0.0496 and wR = 0.1248 for 4791 observed reflections with I 〉 2σ(I). For 2, a = 12.181(2), b = 15.501(3), c = 18.877(4) A^°, V = 3564.3(12)A^°3, Mr = 736.33, Dc = 1.372 g/cm^3, μ = 0.665 mm^-1, F(000) = 1548, the final GOOF = 1.062, R = 0.0575 and wR = 0.1508 for 4562 observed reflections with I 〉 2σ(I). The crystal structures of 1 and 2 are isostructural with very similar supramolecular structures. An infinite two-dimensional network is generated by hydrogen bonding interactions and intermolecular π…π interactions.
文摘The copper (II) complex (1) of a new Iigand 4- (quinolin-8-ylmethyl)- 1, 4, 7. 10-tetraazacycoltridecane-11. 13-dione (L) has been syntehsized and its crystal structure determined. It is of orthorhomic crystal system and Pcad space group with a=16.260 (3), b=7. 739 (2). c=27. 530 (9) A, Mr=416. 97, Z=8. Dx=1. 595 g/cm3,μ=12. 876 cm-1, and F(000)=1736. The final R factor is 0. 061 for 2594 observed reflections with I>3σ(I). The Cu .atom is five coordinated to form a distorted square pyramid geometry in which N(11) of the pendant is at apical site.
文摘The Schiff base, 4-[(2-methoxybenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrizol-3(2H)-one (SB), was used for the first time to adsorb copper(II) ions in aqueous solution. Various parameters such as initial pH, agitation period and different initial concentration of copper(II) ions which influenced the adsorption capacity were investigated. The equilibrium adsorption data for copper(II) ions were fitted to Langmuir, Freundlich and Dubinin-Radushkevish isotherm models. The maximum monolayer adsorption capacity of SB as obtained from Langmuir isotherm was 5.64 mg/g. Kinetic data correlated well with the pseudo second-order kinetic model indicating that chemical adsorption was the rate limiting step.
文摘Here we demonstrate the synthesis of multifunctionalised benzimidazoles through the coupling of o-phenylenediamine with aldehydes by using Copper (II) hydroxide as an efficient solid catalyst in methanol at room temperature. The Copper (II) hydroxide solid catalyst gave better yields (80%-99%) in short reaction time (4-8 h). These commercially available cheap catalysts are more active than many reported expensive heterogeneous catalysts. Using the Copper hydroxide fresh catalyst, the yield of product 3a was 98%, while the recovered catalyst in the three subsequent cycles gave the yield of 94%, 90% and 88% respectively.
基金ThisworkwasfinanciallysupportedbytheNationalNaturalScienceFoundationofChina (No .2 97710 2 2and 2 99710 19)andtheTrans Century
文摘The title complex [CuL3](ClO4)2·2H2O·2CH3CN (L = 1,10-phenanthroline-5,6-dione) has been synthesized and characterized by elemental analysis, conductivity, infrared and UV-Vis spectra. X-ray diffraction analysis at room temperature indicates that the complex (C40H28Cl2CuN8O16, Mr = 1011.14) crystallizes in orthorhombic system, space group P212121 with a=13.983(1), b=14.310(1), c= 20\^890(2) , V = 4179.7(6) 3, Z = 4, Dc = 1.607 g/cm3, F(000) = 2026,μ(MoKα) = 0.736 mm-1. The final R and wR factors are 0.0446 and 0.1212 respectively with 8545 independent reflections. The title complex is composed of a discrete [CuL3]2+ cation, uncoordinated ClO4- anions, H2O and CH3CN molecules. The central Cu(II) atom is six-coordinated by six nitrogen donors of three ligands. The coordination geometry of Cu(II) could be considered as an approximately ideal octahedral configuration with little static Jahn-Teller distortion (the longest and shortest Cu-N bonds are 2.102 vs 2.139 with the mean length of 2.122 ), which is very rare for a six-coordinated Cu(II) complex.
文摘Between all precursors of copper complex, bis-(acetylacetonato)-copper (II) and bis-oxalate copper (II) with very close structures are two of the best representatives for copper nanoparticles synthesis. In this research, only bis-(acetylacetonato)-copper (II) in presence of some effective non-ionic surfactants such as Triton X-100, Dodecylamine, Tween 80 and also triphenylphosphine as a reducing agent via thermal decomposition process was used for copper nanopaticles synthesis. Two shif-base E19 and E22 complexes were also used for the investigation of these kinds of shif-base complexes capabilities by this method as precursors and all results were compared with each other. Between all surfactants, Triton X-100 gave the best yield with the largest grains. The techniques used for characterization of copper nanoparticles were TEM, EDX, FT-IR and XRD. TG-DTA and CV were used for characterization of bis-(acetylacetonato)-copper (II) complex.
文摘Dibenzoyl peroxide undergoes oxidative addition on metallic copper with triphenylphosphine in a mixed solvent(acetone,dichloromethane and trichloromethane),and affords the binuclear copper complex (Cu(C_6H_5COO)_2(OPPh_3))_2.Crystals are monoclinic,space group A_2/a,with cell parameters,a=24.337(3),b=10.566(1),c=21.579(2),β= 93.18(1)°, V=5540(1)~3,Z=4,R=0.042,and Rw=0.044 for 5872 observed reflections. Each copper ion is coordinated by four bridging benzoato ligands and one triphenylphosphine oxide group to form binuclear complexes.
基金Projects(51464029,51168020,51404119,)supported by the National Natural Science Foundation of ChinaProject(2014Y084)supported by the Natural Science Foundation of Yunnan Province Education Department,ChinaProjects(41118011,201421066)supported by the Cultivation Program of Kunming University of Science and Technology,China
文摘The adsorption behaviors of copper ions on chalcopyrite surfaces were investigated based on zeta potential measurements, X-ray photoelectron spectroscopy, copper ion adsorption experiments, first-principles calculations, and Hallimond tube cell flotation experiments. The results show that copper ions activate the chalcopyrite as a result of the interactions between copper ions and sulfur on the chalcopyrite surface. This adsorption increases the flotation rate under certain conditions, and this is beneficial for the flotation of chalcopyrite. The copper ions in the flotation pulp are mainly derived from surface oxidation dissolution and the release of fluid inclusions, and these effects enable chalcopyrite to be activated.
基金Project(51174229) supported by the National Natural Science Foundation of China
文摘The effects of copper ions and calcium ions on the depression of chlorite using CMC(carboxymethyl cellulose) as a depressant were studied through flotation tests,adsorption measurements,ζ potential tests and co-precipitation experiments.The results show that the electrostatic repulsion between the CMC molecules and the chlorite surfaces hinders the approach of the CMC to the chlorite while the presence of copper ions and calcium ions enhances the adsorption density of CMC.The action mechanisms of these two types of ions are different.Calcium ions can not adsorb onto the mineral surfaces,but they can interact with the CMC molecules,thus reducing the charge of the CMC and enhancing adsorption density.Copper ions can adsorb onto the mineral surfaces,which facilitates the CMC adsorption through acid/base interaction.The enhanced adsorption density is also attributed to the decreased electrostatic repulsion between the CMC and mineral surfaces as copper ions reduce the surface charge of both the mineral surfaces and the CMC molecules.