Let R be a noetherian ring and S an excellent extension of R.cid(M) denotes the copure injective dimension of M and cfd(M) denotes the copure flat dimension of M.We prove that if M S is a right S-module then cid(M S)=...Let R be a noetherian ring and S an excellent extension of R.cid(M) denotes the copure injective dimension of M and cfd(M) denotes the copure flat dimension of M.We prove that if M S is a right S-module then cid(M S)=cid(M R) and if S M is a left S-module then cfd(S M)=cfd(R M).Moreover,cid-D(S)=cid-D(R) and cfd-D(S)=cfdD(R).展开更多
文摘Let R be a noetherian ring and S an excellent extension of R.cid(M) denotes the copure injective dimension of M and cfd(M) denotes the copure flat dimension of M.We prove that if M S is a right S-module then cid(M S)=cid(M R) and if S M is a left S-module then cfd(S M)=cfd(R M).Moreover,cid-D(S)=cid-D(R) and cfd-D(S)=cfdD(R).