Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality a...Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality and quantity,and a narrow range of applicable tasks.These limitations significantly restrict the capacity and applicability of CMFD.To overcome the limitations of existing methods,a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach.Firstly,this study formulates the objective task and network relationship as an optimization problem using transfer learning.Furthermore,it thoroughly discusses and analyzes the relationship between CMFD and deep network architecture by employing ResNet-50 during the optimization solving phase.Secondly,a quantitative comparison between fine-tuning and feature decoupling is conducted to evaluate the degree of similarity between the image classification and CMFD domains by the enhanced ResNet-50.Finally,suspicious regions are localized using a feature pyramid network with bottom-up path augmentation.Experimental results demonstrate that IMTNet achieves faster convergence,shorter training times,and favorable generalization performance compared to existingmethods.Moreover,it is shown that IMTNet significantly outperforms fine-tuning based approaches in terms of accuracy and F_(1).展开更多
The extensive availability of advanced digital image technologies and image editing tools has simplified the way of manipulating the image content.An effective technique for tampering the identification is the copy-mo...The extensive availability of advanced digital image technologies and image editing tools has simplified the way of manipulating the image content.An effective technique for tampering the identification is the copy-move forgery.Conventional image processing techniques generally search for the patterns linked to the fake content and restrict the usage in massive data classification.Contrast-ingly,deep learning(DL)models have demonstrated significant performance over the other statistical techniques.With this motivation,this paper presents an Optimal Deep Transfer Learning based Copy Move Forgery Detection(ODTL-CMFD)technique.The presented ODTL-CMFD technique aims to derive a DL model for the classification of target images into the original and the forged/tampered,and then localize the copy moved regions.To perform the feature extraction process,the political optimizer(PO)with Mobile Networks(MobileNet)model has been derived for generating a set of useful vectors.Finally,an enhanced bird swarm algorithm(EBSA)with least square support vector machine(LS-SVM)model has been employed for classifying the digital images into the original or the forged ones.The utilization of the EBSA algorithm helps to properly modify the parameters contained in the Multiclass Support Vector Machine(MSVM)technique and thereby enhance the classification performance.For ensuring the enhanced performance of the ODTL-CMFD technique,a series of simulations have been performed against the benchmark MICC-F220,MICC-F2000,and MICC-F600 datasets.The experimental results have demonstrated the improvised performance of the ODTL-CMFD approach over the other techniques in terms of several evaluation measures.展开更多
An effective algorithm is proposed to detect copy-move forgery.In this algorithm,first,the PatchMatch algorithm is improved by using a reliable order-statistics-based approximate nearest neighbor search algorithm(ROSA...An effective algorithm is proposed to detect copy-move forgery.In this algorithm,first,the PatchMatch algorithm is improved by using a reliable order-statistics-based approximate nearest neighbor search algorithm(ROSANNA)to modify the propagation process.Then,fractional quaternion Zernike moments(FrQZMs)are considered to be features extracted from color forged images.Finally,the extracted FrQZMs features are matched by the improved PatchMatch algorithm.The experimental results on two publicly available datasets(FAU and GRIP datasets)show that the proposed algorithm performs better than the state-of-the-art algorithms not only in objective criteria F-measure value but also in visual.Moreover,the proposed algorithm is robust to some attacks,such as additive white Gaussian noise,JPEG compression,rotation,and scaling.展开更多
Copy-Move Forgery(CMF) is one of the simple and effective operations to create forged digital images.Recently,techniques based on Scale Invariant Features Transform(SIFT) are widely used to detect CMF.Various approach...Copy-Move Forgery(CMF) is one of the simple and effective operations to create forged digital images.Recently,techniques based on Scale Invariant Features Transform(SIFT) are widely used to detect CMF.Various approaches under the SIFT-based framework are the most acceptable ways to CMF detection due to their robust performance.However,for some CMF images,these approaches cannot produce satisfactory detection results.For instance,the number of the matched keypoints may be too less to prove an image to be a CMF image or to generate an accurate result.Sometimes these approaches may even produce error results.According to our observations,one of the reasons is that detection results produced by the SIFT-based framework depend highly on parameters whose values are often determined with experiences.These values are only applicable to a few images,which limits their application.To solve the problem,a novel approach named as CMF Detection with Particle Swarm Optimization(CMFDPSO) is proposed in this paper.CMFD-PSO integrates the Particle Swarm Optimization(PSO) algorithm into the SIFT-based framework.It utilizes the PSO algorithm to generate customized parameter values for images,which are used for CMF detection under the SIFT-based framework.Experimental results show that CMFD-PSO has good performance.展开更多
Most existing methods for image copy-move forgery detection(CMFD)operate on grayscale images. Although the keypoint-based methods have the advantages of strong robustness and low computational cost,they cannot identif...Most existing methods for image copy-move forgery detection(CMFD)operate on grayscale images. Although the keypoint-based methods have the advantages of strong robustness and low computational cost,they cannot identify the flat duplicated regions without reliable extracted features. In this paper, we propose a new CMFD method by using speeded-up robust feature(SURF)in the opponent color space. Our method starts by converting the inspected image from RGB to the opponent color space. The color gradient per pixel is calculated and taken as the work space for SURF to extract the keypoints. The matched keypoints are clustered and their geometric transformations are estimated. Finally, the false matches are removed. Experimental results show that the proposed technique can effectively expose the duplicated regions with various transformations, even when the duplication regions are flat.展开更多
Copy-move offense is considerably used to conceal or hide several data in the digital image for specific aim, and onto this offense some portion of the genuine image is reduplicated and pasted in the same image. There...Copy-move offense is considerably used to conceal or hide several data in the digital image for specific aim, and onto this offense some portion of the genuine image is reduplicated and pasted in the same image. Therefore, Copy-Move forgery is a very significant problem and active research area to check the confirmation of the image. In this paper, a system for Copy Move Forgery detection is proposed. The proposed system is composed of two stages: one is called the detection stages and the second is called the refine detection stage. The detection stage is executed using Speeded-Up Robust Feature (SURF) and Binary Robust Invariant Scalable Keypoints (BRISK) for feature detection and in the refine detection stage, image registration using non-linear transformation is used to enhance detection efficiency. Initially, the genuine image is picked, and then both SURF and BRISK feature extractions are used in parallel to detect the interest keypoints. This gives an appropriate number of interest points and gives the assurance for finding the majority of the manipulated regions. RANSAC is employed to find the superior group of matches to differentiate the manipulated parts. Then, non-linear transformation between the best-matched sets from both extraction features is used as an optimization to get the best-matched set and detect the copied regions. A number of numerical experiments performed using many benchmark datasets such as, the CASIA v2.0, MICC-220, MICC-F600 and MICC-F2000 datasets. With the proposed algorithm, an overall average detection accuracy of 95.33% is obtained for evaluation carried out with the aforementioned databases. Forgery detection achieved True Positive Rate of 97.4% for tampered images with object translation, different degree of rotation and enlargement. Thus, results from different datasets have been set, proving that the proposed algorithm can individuate the altered areas, with high reliability and dealing with multiple cloning.展开更多
Image forging is the alteration of a digital image to conceal some of the necessary or helpful information.It cannot be easy to distinguish themodified region fromthe original image in somecircumstances.The demand for...Image forging is the alteration of a digital image to conceal some of the necessary or helpful information.It cannot be easy to distinguish themodified region fromthe original image in somecircumstances.The demand for authenticity and the integrity of the image drive the detection of a fabricated image.There have been cases of ownership infringements or fraudulent actions by counterfeiting multimedia files,including re-sampling or copy-moving.This work presents a high-level view of the forensics of digital images and their possible detection approaches.This work presents a thorough analysis of digital image forgery detection techniques with their steps and effectiveness.These methods have identified forgery and its type and compared it with state of the art.This work will help us to find the best forgery detection technique based on the different environments.It also shows the current issues in other methods,which can help researchers find future scope for further research in this field.展开更多
Recently, digital images have become the most used data, thanks tohigh internet speed and high resolution, cheap and easily accessible digitalcameras. We generate, transmit and store millions of images every second.Mo...Recently, digital images have become the most used data, thanks tohigh internet speed and high resolution, cheap and easily accessible digitalcameras. We generate, transmit and store millions of images every second.Most of these images are insignificant images containing only personal information.However, in many fields such as banking, finance, public institutions,and educational institutions, the images of many valuable objects like IDcards, photographs, credit cards, and transaction receipts are stored andtransmitted to the digital environment. These images are very significantand must be secured. A valuable image can be maliciously modified by anattacker. The modification of an image is sometimes imperceptible even by theperson who stored the image. In this paper, an active image forgery detectionmethod that encodes and decodes image edge information is proposed. Theproposed method is implemented by designing an interface and applied on atest image which is frequently used in the literature. Various tampering attacksare simulated to test the fidelity of the method. The method not only notifieswhether the image is forged or not but also marks the tampered region ofthe image. Also, the proposed method successfully detected tampered regionsafter geometric attacks, even on self-copy attacks. Also, it didn’t fail on JPEGcompression.展开更多
With the improvement of image editing technology,the threshold of image tampering technology decreases,which leads to a decrease in the authenticity of image content.This has also driven research on image forgery dete...With the improvement of image editing technology,the threshold of image tampering technology decreases,which leads to a decrease in the authenticity of image content.This has also driven research on image forgery detection techniques.In this paper,a U-Net with multiple sensory field feature extraction(MSCU-Net)for image forgery detection is proposed.The proposed MSCU-Net is an end-to-end image essential attribute segmentation network that can perform image forgery detection without any pre-processing or post-processing.MSCU-Net replaces the single-scale convolution module in the original network with an improved multiple perceptual field convolution module so that the decoder can synthesize the features of different perceptual fields use residual propagation and residual feedback to recall the input feature information and consolidate the input feature information to make the difference in image attributes between the untampered and tampered regions more obvious,and introduce the channel coordinate confusion attention mechanism(CCCA)in skip-connection to further improve the segmentation accuracy of the network.In this paper,extensive experiments are conducted on various mainstream datasets,and the results verify the effectiveness of the proposed method,which outperforms the state-of-the-art image forgery detection methods.展开更多
This paper is concerned with a vital topic in image processing:color image forgery detection. The development of computing capabilitieshas led to a breakthrough in hacking and forgery attacks on signal, image,and data...This paper is concerned with a vital topic in image processing:color image forgery detection. The development of computing capabilitieshas led to a breakthrough in hacking and forgery attacks on signal, image,and data communicated over networks. Hence, there is an urgent need fordeveloping efficient image forgery detection algorithms. Two main types offorgery are considered in this paper: splicing and copy-move. Splicing isperformed by inserting a part of an image into another image. On the otherhand, copy-move forgery is performed by copying a part of the image intoanother position in the same image. The proposed approach for splicingdetection is based on the assumption that illumination between the originaland tampered images is different. To detect the difference between the originaland tampered images, the homomorphic transform separates the illuminationcomponent from the reflectance component. The illumination histogramderivative is used for detecting the difference in illumination, and henceforgery detection is accomplished. Prior to performing the forgery detectionprocess, some pre-processing techniques, including histogram equalization,histogram matching, high-pass filtering, homomorphic enhancement, andsingle image super-resolution, are introduced to reinforce the details andchanges between the original and embedded sections. The proposed approachfor copy-move forgery detection is performed with the Speeded Up RobustFeatures (SURF) algorithm, which extracts feature points and feature vectors. Searching for the copied partition is accomplished through matchingwith Euclidian distance and hierarchical clustering. In addition, some preprocessing methods are used with the SURF algorithm, such as histogramequalization and single-mage super-resolution. Simulation results proved thefeasibility and the robustness of the pre-processing step in homomorphicdetection and SURF detection algorithms for splicing and copy-move forgerydetection, respectively.展开更多
Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the mo...Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the most common types of image forgeries.Thus,an overview of the traditional and the recent copy-move forgery localization methods using passive techniques is presented in this paper.These methods are classified into three types:block-based methods,keypoint-based methods,and deep learning-based methods.In addition,the strengths and weaknesses of these methods are compared and analyzed in robustness and computational cost.Finally,further research directions are discussed.展开更多
With the growth of digital media data manipulation in today’s era due to the availability of readily handy tampering software,the authenticity of records is at high risk,especially in video.There is a dire need to de...With the growth of digital media data manipulation in today’s era due to the availability of readily handy tampering software,the authenticity of records is at high risk,especially in video.There is a dire need to detect such problem and do the necessary actions.In this work,we propose an approach to detect the interframe video forgery utilizing the deep features obtained from the parallel deep neural network model and thorough analytical computations.The proposed approach only uses the deep features extracted from the CNN model and then applies the conventional mathematical approach to these features to find the forgery in the video.This work calculates the correlation coefficient from the deep features of the adjacent frames rather than calculating directly from the frames.We divide the procedure of forgery detection into two phases–video forgery detection and video forgery classification.In video forgery detection,this approach detect input video is original or tampered.If the video is not original,then the video is checked in the next phase,which is video forgery classification.In the video forgery classification,method review the forged video for insertion forgery,deletion forgery,and also again check for originality.The proposed work is generalized and it is tested on two different datasets.The experimental results of our proposed model show that our approach can detect the forgery with the accuracy of 91%on VIFFD dataset,90%in TDTV dataset and classify the type of forgery–insertion and deletion with the accuracy of 82%on VIFFD dataset,86%on TDTV dataset.This work can helps in the analysis of original and tempered video in various domain.展开更多
With the rapid progress of the image processing software, the image forgery can leave no visual clues on the tampered regions and make us unable to authenticate the image. In general, the image forgery technologies of...With the rapid progress of the image processing software, the image forgery can leave no visual clues on the tampered regions and make us unable to authenticate the image. In general, the image forgery technologies often utilizes the scaling, rotation or skewing operations to tamper some regions in the image, in which the resampling and interpolation processes are often demanded. By observing the detectable periodic distribution properties generated from the resampling and interpolation processes, we propose a novel method based on the intrinsic properties of resampling scheme to detect the tampered regions. The proposed method applies the pre-calculated resampling weighting table to detect the periodic properties of prediction error distribution. The experimental results show that the proposed method outperforms the conventional methods in terms of efficiency and accuracy.展开更多
Increasingly advanced image processing technology has made digital image editing easier and easier.With image processing software at one’s fingertips,one can easily alter the content of an image,and the altered image...Increasingly advanced image processing technology has made digital image editing easier and easier.With image processing software at one’s fingertips,one can easily alter the content of an image,and the altered image is so realistic that it is illegible to the naked eye.These tampered images have posed a serious threat to personal privacy,social order,and national security.Therefore,detecting and locating tampered areas in images has important practical significance,and has become an important research topic in the field of multimedia information security.In recent years,deep learning technology has been widely used in image tampering localization,and the achieved performance has significantly surpassed traditional tampering forensics methods.This paper mainly sorts out the relevant knowledge and latest methods in the field of image tampering detection based on deep learning.According to the two types of tampering detection based on deep learning,the detection tasks of the method are detailed separately,and the problems and future prospects in this field are discussed.It is quite different from the existing work:(1)This paper mainly focuses on the problem of image tampering detection,so it does not elaborate on various forensic methods.(2)This paper focuses on the detectionmethod of image tampering based on deep learning.(3)This paper is driven by the needs of tampering targets,so it pays more attention to sorting out methods for different tampering detection tasks.展开更多
Social network platforms such as Twitter, Instagram and Facebook are one of the fastest and most convenient means for sharing digital images. Digital images are generally accepted as credible news but, it may undergo ...Social network platforms such as Twitter, Instagram and Facebook are one of the fastest and most convenient means for sharing digital images. Digital images are generally accepted as credible news but, it may undergo some manipulations before being shared without leaving any obvious traces of tampering; due to existence of the powerful image editing softwares. Copy-move forgery technique is a very simple and common type of image forgery, where a part of the image is copied and then pasted in the same image to replicate or hide some parts from the image. In this paper, we proposed a copy-scale-move forgery detection method based on Scale Invariant Feature Operator (SFOP) detector. The keypoints are then described using MROGH descriptor. Experimental results show that the proposed method is able to locate and detect the forgery even if under some geometric transformations such as scaling.展开更多
基金supported and founded by the Guizhou Provincial Science and Technology Project under the Grant No.QKH-Basic-ZK[2021]YB311the Youth Science and Technology Talent Growth Project of Guizhou Provincial Education Department under Grant No.QJH-KY-ZK[2021]132+2 种基金the Guizhou Provincial Science and Technology Project under the Grant No.QKH-Basic-ZK[2021]YB319the National Natural Science Foundation of China(NSFC)under Grant 61902085the Key Laboratory Program of Blockchain and Fintech of Department of Education of Guizhou Province(2023-014).
文摘Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality and quantity,and a narrow range of applicable tasks.These limitations significantly restrict the capacity and applicability of CMFD.To overcome the limitations of existing methods,a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach.Firstly,this study formulates the objective task and network relationship as an optimization problem using transfer learning.Furthermore,it thoroughly discusses and analyzes the relationship between CMFD and deep network architecture by employing ResNet-50 during the optimization solving phase.Secondly,a quantitative comparison between fine-tuning and feature decoupling is conducted to evaluate the degree of similarity between the image classification and CMFD domains by the enhanced ResNet-50.Finally,suspicious regions are localized using a feature pyramid network with bottom-up path augmentation.Experimental results demonstrate that IMTNet achieves faster convergence,shorter training times,and favorable generalization performance compared to existingmethods.Moreover,it is shown that IMTNet significantly outperforms fine-tuning based approaches in terms of accuracy and F_(1).
文摘The extensive availability of advanced digital image technologies and image editing tools has simplified the way of manipulating the image content.An effective technique for tampering the identification is the copy-move forgery.Conventional image processing techniques generally search for the patterns linked to the fake content and restrict the usage in massive data classification.Contrast-ingly,deep learning(DL)models have demonstrated significant performance over the other statistical techniques.With this motivation,this paper presents an Optimal Deep Transfer Learning based Copy Move Forgery Detection(ODTL-CMFD)technique.The presented ODTL-CMFD technique aims to derive a DL model for the classification of target images into the original and the forged/tampered,and then localize the copy moved regions.To perform the feature extraction process,the political optimizer(PO)with Mobile Networks(MobileNet)model has been derived for generating a set of useful vectors.Finally,an enhanced bird swarm algorithm(EBSA)with least square support vector machine(LS-SVM)model has been employed for classifying the digital images into the original or the forged ones.The utilization of the EBSA algorithm helps to properly modify the parameters contained in the Multiclass Support Vector Machine(MSVM)technique and thereby enhance the classification performance.For ensuring the enhanced performance of the ODTL-CMFD technique,a series of simulations have been performed against the benchmark MICC-F220,MICC-F2000,and MICC-F600 datasets.The experimental results have demonstrated the improvised performance of the ODTL-CMFD approach over the other techniques in terms of several evaluation measures.
基金The National Natural Science of China(No.61572258,61771231,61772281,61672294)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Qing Lan Project of Jiangsu Higher Education Institutions
文摘An effective algorithm is proposed to detect copy-move forgery.In this algorithm,first,the PatchMatch algorithm is improved by using a reliable order-statistics-based approximate nearest neighbor search algorithm(ROSANNA)to modify the propagation process.Then,fractional quaternion Zernike moments(FrQZMs)are considered to be features extracted from color forged images.Finally,the extracted FrQZMs features are matched by the improved PatchMatch algorithm.The experimental results on two publicly available datasets(FAU and GRIP datasets)show that the proposed algorithm performs better than the state-of-the-art algorithms not only in objective criteria F-measure value but also in visual.Moreover,the proposed algorithm is robust to some attacks,such as additive white Gaussian noise,JPEG compression,rotation,and scaling.
基金supported in part by the National Natural Science Foundation of China under grant No.(61472429,61070192,91018008,61303074,61170240)Beijing Natural Science Foundation under grant No.4122041+1 种基金National High-Tech Research Development Program of China under grant No.2007AA01Z414National Science and Technology Major Project of China under grant No.2012ZX01039-004
文摘Copy-Move Forgery(CMF) is one of the simple and effective operations to create forged digital images.Recently,techniques based on Scale Invariant Features Transform(SIFT) are widely used to detect CMF.Various approaches under the SIFT-based framework are the most acceptable ways to CMF detection due to their robust performance.However,for some CMF images,these approaches cannot produce satisfactory detection results.For instance,the number of the matched keypoints may be too less to prove an image to be a CMF image or to generate an accurate result.Sometimes these approaches may even produce error results.According to our observations,one of the reasons is that detection results produced by the SIFT-based framework depend highly on parameters whose values are often determined with experiences.These values are only applicable to a few images,which limits their application.To solve the problem,a novel approach named as CMF Detection with Particle Swarm Optimization(CMFDPSO) is proposed in this paper.CMFD-PSO integrates the Particle Swarm Optimization(PSO) algorithm into the SIFT-based framework.It utilizes the PSO algorithm to generate customized parameter values for images,which are used for CMF detection under the SIFT-based framework.Experimental results show that CMFD-PSO has good performance.
基金Supported by the Natural Science Foundation of Tianjin(No.15JCYBJC15500)
文摘Most existing methods for image copy-move forgery detection(CMFD)operate on grayscale images. Although the keypoint-based methods have the advantages of strong robustness and low computational cost,they cannot identify the flat duplicated regions without reliable extracted features. In this paper, we propose a new CMFD method by using speeded-up robust feature(SURF)in the opponent color space. Our method starts by converting the inspected image from RGB to the opponent color space. The color gradient per pixel is calculated and taken as the work space for SURF to extract the keypoints. The matched keypoints are clustered and their geometric transformations are estimated. Finally, the false matches are removed. Experimental results show that the proposed technique can effectively expose the duplicated regions with various transformations, even when the duplication regions are flat.
文摘Copy-move offense is considerably used to conceal or hide several data in the digital image for specific aim, and onto this offense some portion of the genuine image is reduplicated and pasted in the same image. Therefore, Copy-Move forgery is a very significant problem and active research area to check the confirmation of the image. In this paper, a system for Copy Move Forgery detection is proposed. The proposed system is composed of two stages: one is called the detection stages and the second is called the refine detection stage. The detection stage is executed using Speeded-Up Robust Feature (SURF) and Binary Robust Invariant Scalable Keypoints (BRISK) for feature detection and in the refine detection stage, image registration using non-linear transformation is used to enhance detection efficiency. Initially, the genuine image is picked, and then both SURF and BRISK feature extractions are used in parallel to detect the interest keypoints. This gives an appropriate number of interest points and gives the assurance for finding the majority of the manipulated regions. RANSAC is employed to find the superior group of matches to differentiate the manipulated parts. Then, non-linear transformation between the best-matched sets from both extraction features is used as an optimization to get the best-matched set and detect the copied regions. A number of numerical experiments performed using many benchmark datasets such as, the CASIA v2.0, MICC-220, MICC-F600 and MICC-F2000 datasets. With the proposed algorithm, an overall average detection accuracy of 95.33% is obtained for evaluation carried out with the aforementioned databases. Forgery detection achieved True Positive Rate of 97.4% for tampered images with object translation, different degree of rotation and enlargement. Thus, results from different datasets have been set, proving that the proposed algorithm can individuate the altered areas, with high reliability and dealing with multiple cloning.
文摘Image forging is the alteration of a digital image to conceal some of the necessary or helpful information.It cannot be easy to distinguish themodified region fromthe original image in somecircumstances.The demand for authenticity and the integrity of the image drive the detection of a fabricated image.There have been cases of ownership infringements or fraudulent actions by counterfeiting multimedia files,including re-sampling or copy-moving.This work presents a high-level view of the forensics of digital images and their possible detection approaches.This work presents a thorough analysis of digital image forgery detection techniques with their steps and effectiveness.These methods have identified forgery and its type and compared it with state of the art.This work will help us to find the best forgery detection technique based on the different environments.It also shows the current issues in other methods,which can help researchers find future scope for further research in this field.
文摘Recently, digital images have become the most used data, thanks tohigh internet speed and high resolution, cheap and easily accessible digitalcameras. We generate, transmit and store millions of images every second.Most of these images are insignificant images containing only personal information.However, in many fields such as banking, finance, public institutions,and educational institutions, the images of many valuable objects like IDcards, photographs, credit cards, and transaction receipts are stored andtransmitted to the digital environment. These images are very significantand must be secured. A valuable image can be maliciously modified by anattacker. The modification of an image is sometimes imperceptible even by theperson who stored the image. In this paper, an active image forgery detectionmethod that encodes and decodes image edge information is proposed. Theproposed method is implemented by designing an interface and applied on atest image which is frequently used in the literature. Various tampering attacksare simulated to test the fidelity of the method. The method not only notifieswhether the image is forged or not but also marks the tampered region ofthe image. Also, the proposed method successfully detected tampered regionsafter geometric attacks, even on self-copy attacks. Also, it didn’t fail on JPEGcompression.
基金supported in part by the National Natural Science Foundation of China(Grant Number 61971078)Chongqing University of Technology Graduate Innovation Foundation(Grant Number gzlcx20222064).
文摘With the improvement of image editing technology,the threshold of image tampering technology decreases,which leads to a decrease in the authenticity of image content.This has also driven research on image forgery detection techniques.In this paper,a U-Net with multiple sensory field feature extraction(MSCU-Net)for image forgery detection is proposed.The proposed MSCU-Net is an end-to-end image essential attribute segmentation network that can perform image forgery detection without any pre-processing or post-processing.MSCU-Net replaces the single-scale convolution module in the original network with an improved multiple perceptual field convolution module so that the decoder can synthesize the features of different perceptual fields use residual propagation and residual feedback to recall the input feature information and consolidate the input feature information to make the difference in image attributes between the untampered and tampered regions more obvious,and introduce the channel coordinate confusion attention mechanism(CCCA)in skip-connection to further improve the segmentation accuracy of the network.In this paper,extensive experiments are conducted on various mainstream datasets,and the results verify the effectiveness of the proposed method,which outperforms the state-of-the-art image forgery detection methods.
文摘This paper is concerned with a vital topic in image processing:color image forgery detection. The development of computing capabilitieshas led to a breakthrough in hacking and forgery attacks on signal, image,and data communicated over networks. Hence, there is an urgent need fordeveloping efficient image forgery detection algorithms. Two main types offorgery are considered in this paper: splicing and copy-move. Splicing isperformed by inserting a part of an image into another image. On the otherhand, copy-move forgery is performed by copying a part of the image intoanother position in the same image. The proposed approach for splicingdetection is based on the assumption that illumination between the originaland tampered images is different. To detect the difference between the originaland tampered images, the homomorphic transform separates the illuminationcomponent from the reflectance component. The illumination histogramderivative is used for detecting the difference in illumination, and henceforgery detection is accomplished. Prior to performing the forgery detectionprocess, some pre-processing techniques, including histogram equalization,histogram matching, high-pass filtering, homomorphic enhancement, andsingle image super-resolution, are introduced to reinforce the details andchanges between the original and embedded sections. The proposed approachfor copy-move forgery detection is performed with the Speeded Up RobustFeatures (SURF) algorithm, which extracts feature points and feature vectors. Searching for the copied partition is accomplished through matchingwith Euclidian distance and hierarchical clustering. In addition, some preprocessing methods are used with the SURF algorithm, such as histogramequalization and single-mage super-resolution. Simulation results proved thefeasibility and the robustness of the pre-processing step in homomorphicdetection and SURF detection algorithms for splicing and copy-move forgerydetection, respectively.
文摘Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the most common types of image forgeries.Thus,an overview of the traditional and the recent copy-move forgery localization methods using passive techniques is presented in this paper.These methods are classified into three types:block-based methods,keypoint-based methods,and deep learning-based methods.In addition,the strengths and weaknesses of these methods are compared and analyzed in robustness and computational cost.Finally,further research directions are discussed.
文摘With the growth of digital media data manipulation in today’s era due to the availability of readily handy tampering software,the authenticity of records is at high risk,especially in video.There is a dire need to detect such problem and do the necessary actions.In this work,we propose an approach to detect the interframe video forgery utilizing the deep features obtained from the parallel deep neural network model and thorough analytical computations.The proposed approach only uses the deep features extracted from the CNN model and then applies the conventional mathematical approach to these features to find the forgery in the video.This work calculates the correlation coefficient from the deep features of the adjacent frames rather than calculating directly from the frames.We divide the procedure of forgery detection into two phases–video forgery detection and video forgery classification.In video forgery detection,this approach detect input video is original or tampered.If the video is not original,then the video is checked in the next phase,which is video forgery classification.In the video forgery classification,method review the forged video for insertion forgery,deletion forgery,and also again check for originality.The proposed work is generalized and it is tested on two different datasets.The experimental results of our proposed model show that our approach can detect the forgery with the accuracy of 91%on VIFFD dataset,90%in TDTV dataset and classify the type of forgery–insertion and deletion with the accuracy of 82%on VIFFD dataset,86%on TDTV dataset.This work can helps in the analysis of original and tempered video in various domain.
文摘With the rapid progress of the image processing software, the image forgery can leave no visual clues on the tampered regions and make us unable to authenticate the image. In general, the image forgery technologies often utilizes the scaling, rotation or skewing operations to tamper some regions in the image, in which the resampling and interpolation processes are often demanded. By observing the detectable periodic distribution properties generated from the resampling and interpolation processes, we propose a novel method based on the intrinsic properties of resampling scheme to detect the tampered regions. The proposed method applies the pre-calculated resampling weighting table to detect the periodic properties of prediction error distribution. The experimental results show that the proposed method outperforms the conventional methods in terms of efficiency and accuracy.
基金supported by Key Projects of Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province of China(202210300028Z).
文摘Increasingly advanced image processing technology has made digital image editing easier and easier.With image processing software at one’s fingertips,one can easily alter the content of an image,and the altered image is so realistic that it is illegible to the naked eye.These tampered images have posed a serious threat to personal privacy,social order,and national security.Therefore,detecting and locating tampered areas in images has important practical significance,and has become an important research topic in the field of multimedia information security.In recent years,deep learning technology has been widely used in image tampering localization,and the achieved performance has significantly surpassed traditional tampering forensics methods.This paper mainly sorts out the relevant knowledge and latest methods in the field of image tampering detection based on deep learning.According to the two types of tampering detection based on deep learning,the detection tasks of the method are detailed separately,and the problems and future prospects in this field are discussed.It is quite different from the existing work:(1)This paper mainly focuses on the problem of image tampering detection,so it does not elaborate on various forensic methods.(2)This paper focuses on the detectionmethod of image tampering based on deep learning.(3)This paper is driven by the needs of tampering targets,so it pays more attention to sorting out methods for different tampering detection tasks.
基金The authors would like to thank all anonymous reviewers for their insightful comments. Additionally, This work is supported by the National Natural Science Foundation of China (Grant Number: 61471141, 61301099, 61361166006), the Fundamental Research Funds for the Central Universities (Grant Number: HIT. KISTP. 201416, HIT. KISTP. 201414).
文摘Social network platforms such as Twitter, Instagram and Facebook are one of the fastest and most convenient means for sharing digital images. Digital images are generally accepted as credible news but, it may undergo some manipulations before being shared without leaving any obvious traces of tampering; due to existence of the powerful image editing softwares. Copy-move forgery technique is a very simple and common type of image forgery, where a part of the image is copied and then pasted in the same image to replicate or hide some parts from the image. In this paper, we proposed a copy-scale-move forgery detection method based on Scale Invariant Feature Operator (SFOP) detector. The keypoints are then described using MROGH descriptor. Experimental results show that the proposed method is able to locate and detect the forgery even if under some geometric transformations such as scaling.