BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of cor...BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.展开更多
A new technology for detecting a tiny residual core in the small inner cavity of complex castings is proposed. The residual core is identified by using image recognition technology. Tracer processing and image signal ...A new technology for detecting a tiny residual core in the small inner cavity of complex castings is proposed. The residual core is identified by using image recognition technology. Tracer processing and image signal processing are combined to enhance the image contrast. The relationships between the concentration of tracer, the size of the residual core, the wall thickness of the castings and the contrast were obtained. Based on the experimental data, the minimum detectable amount of residual core under different conditions was obtained. The results show that the minimum detectable amount decreases from 4.398 mg to 0.438 mg for the 1.0 mm wall thickness casting when the concentration of tracer increases from 0% to 20%. The signal-to-noise ratio(SNR) of the detection results increases by 27.010 by means of average filtering and linear point operation. The subtraction of image and image background was performed, and then the boundary extraction was carried out to obtain a clear and reliable result. The experimental results show that the non-traced residual core cannot be detected for a blade with a thickness less than 5 mm. The residual core of 1 mm thickness can be barely identified by artificial recognition after tracer processing and image processing, while the residual core of 0.6 mm thickness can be detected clearly using image recognition technology.展开更多
Background:Exotic parrots have established breeding populations in southeast Florida,including several species that nest in tree cavities.We aimed to determine the species identity,nest site requirements,relative nest...Background:Exotic parrots have established breeding populations in southeast Florida,including several species that nest in tree cavities.We aimed to determine the species identity,nest site requirements,relative nest abundance,geographic distribution,and interactions of parrots with native cavity-nesting bird species.Methods:We searched Miami-Dade County,Florida,and nearby areas for natural cavities and holes excavated by woodpeckers,recording attributes of potential nest trees.We inspected all cavities with an elevated video inspection system to determine occupancy by parrots or other birds.We mapped nearly 4000 citizen science observations of parrots in our study area corresponding to our study period,and used these to construct range maps,comparing them to our nesting observations.Results:Not all parrots reported or observed in our study area were actively breeding.Some parrots were observed at tree cavities,which previous studies have suggested is evidence of reproduction,but our inspections with an elevated video inspection system suggest they never initiated nesting attempts.Several parrot species did successfully nest in tree cavities,Red-masked Parakeets(Psittacara erythrogenys)and Orange-winged Parrots(Amazona amazonica)being the most common(n=7 and 6 nests,respectively).These two parrots had similar nesting requirements,but Orange-winged Parrots use nests with larger entrance holes,which they often enlarge.Geographic analysis of nests combined with citizen science data indicate that parrots are limited to developed areas.The most common parrots were less abundant cavity nesters than the native birds which persist in Miami’s urban areas,and far less abundant than the invasive European Starling(Sturnus vulgaris).Conclusions:Exotic parrots breeding elsewhere in the world have harmed native cavity-nesting birds through interference competition,but competitive interference in southeast Florida is minimized by the urban affinities of parrots in this region.The relative abundance and geographic distribution suggest that these parrots are unlikely to invade adjacent wilderness areas.展开更多
Fast in situ switching of magnetic vortex core in a ferromagnetic nanodisk assisted by a nanocavity,with diameter comparable to the dimension of a vortex core,is systematically investigated by changing the strength as...Fast in situ switching of magnetic vortex core in a ferromagnetic nanodisk assisted by a nanocavity,with diameter comparable to the dimension of a vortex core,is systematically investigated by changing the strength as well as the diameter of the effective circular region of the applied magnetic field.By applying a local magnetic field within a small area at the nanodisk center,fast switching time of about 35 ps is achieved with relatively low field strength(70 mT)which is beneficial for fast data reading and writing.The reason for this phenomenon is that the magnetic spins around the nanocavity is aligned along the cavity wall due to the shape anisotropy when the perpendicular field is applied,which deepens the dip around the vortex core,and thus facilitates the vortex core switching.展开更多
Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas...Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.展开更多
We propose a scheme for transferring of a two-mode entanglement of zero- or one-photon entangled states between two cavities via atom-cavity field resonant interaction. In our proposal, in order to transfer the entang...We propose a scheme for transferring of a two-mode entanglement of zero- or one-photon entangled states between two cavities via atom-cavity field resonant interaction. In our proposal, in order to transfer the entangled state, we only need two identical two-level atoms and a two-mode cavity for receiving the teleported state. This scheme does not require Bell-state measurement and performing any transformations to reconstruct the initial state. And the transfer can occur with 100% success probability in a simple manner. And a network for transferring of a two-mode entangled state between cavities is suggested. This scheme can also be extended to transfer N-mode entangled state of cavity.展开更多
High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching...High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.展开更多
Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const...Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”展开更多
Four types of magnetic alloy cores,labeled as V1,V2,A1 and A2,were produced by Liyuan Corp.Ltd.,for the radio frequency compression cavity of HIRFL-CSRm.In this work,their permeability,quality factor (Q value) and shu...Four types of magnetic alloy cores,labeled as V1,V2,A1 and A2,were produced by Liyuan Corp.Ltd.,for the radio frequency compression cavity of HIRFL-CSRm.In this work,their permeability,quality factor (Q value) and shunt impedance were measured before installing them into the cavity.The results show that the V1,V2 and A2 have higher permeability and shunt impedance,and lower Q value,and are suitable to the radio frequency compression cavity.展开更多
To validate the design rationality of the power coupler for the RFQ cavity and minimize cavity contamination,we designed a low-loss offline conditioning cavity and conducted high-power testing.This offline cavity feat...To validate the design rationality of the power coupler for the RFQ cavity and minimize cavity contamination,we designed a low-loss offline conditioning cavity and conducted high-power testing.This offline cavity features two coupling ports and two tuners,operating at a frequency of 162.5 MHz with a tuning range of 3.2 MHz.Adjusting the installation angle of the coupling ring and the insertion depth of the tuner helps minimize cavity losses.We performed electromagnetic structural and multiphysics simulations,revealing a minimal theoretical power loss of 4.3%.However,when the cavity frequency varied by110 kHz,theoretical power losses increased to10%,necessitating constant tuner adjustments during conditioning.Multiphysics simulations indicated that increased cavity temperature did not affect frequency variation.Upon completion of the offline high-power conditioning platform,we measured the transmission performance,revealing a power loss of 6.3%,exceeding the theoretical calculation.Conditioning utilized efficient automatic range scanning and standing wave resonant methods.To fully condition the power coupler,a 15°phase difference between two standing wave points in the condition-ing system was necessary.Notably,the maximum continuous wave power surpassed 20 kW,exceeding the expected target.展开更多
Finesse is a critical parameter for describing the characteristics of an optical enhancement cavity(OEC). This paper first presents a review of finesse measurement techniques, including a comparative analysis of the a...Finesse is a critical parameter for describing the characteristics of an optical enhancement cavity(OEC). This paper first presents a review of finesse measurement techniques, including a comparative analysis of the advantages, disadvantages, and potential limitations of several main methods from both theoretical and practical perspectives. A variant of the existing method called the free spectral range(FSR) modulation method is proposed and compared with three other finesse measurement methods, i.e., the fast-switching cavity ring-down(CRD) method, the rapidly swept-frequency(SF) CRD method, and the ringing effect method. A high-power OEC platform with a high finesse of approximately 16000 is built and measured with the four methods. The performance of these methods is compared, and the results show that the FSR modulation method and the fast-switching CRD method are more suitable and accurate than the other two methods for high-finesse OEC measurements. The CRD method and the ringing effect method can be implemented in open loop using simple equipment and are easy to perform. Additionally, recommendations for selecting finesse measurement methods under different conditions are proposed, which benefit the development of OEC and its applications.展开更多
A high-performance adaptive radiative cooler comprising a multilayer-filter VO_(2)-based Fabry-Pérot(FP)cavity is proposed.The bottom FP cavity has four layers,VO_(2)/NaCl/PVC/Ag.Based on the phase transition of ...A high-performance adaptive radiative cooler comprising a multilayer-filter VO_(2)-based Fabry-Pérot(FP)cavity is proposed.The bottom FP cavity has four layers,VO_(2)/NaCl/PVC/Ag.Based on the phase transition of VO_(2),the average emissivity in the transparent window can be switched from 3.7%to 96.3%.Additionally,the average emissivity can also be adjusted with external strain to the PVC layer,providing another way to attain the desired cooling effect.An upper filter is included to block most of the solar radiation and provide a transmittance of 96.7% in the atmospheric window.At high temperature,the adaptive emitter automatically activates radiative cooling.The net cooling power is up to 156.4 W·m^(-2)at an ambient temperature of 303 K.Our adaptive emitter still exhibits stable selective emissivity at different incident angles and heat transfer coefficients.At low temperature,the radiative cooling automatically deactivates,and the average emissivity decreases to only 3.8%.Therefore,our work not only provides new insights into the design of high-performance adaptive radiative coolers but also advances the development of intelligent thermal management.展开更多
A self-consistent and precise method to determine the time-dependent radiative albedo,i.e.,the ratio of the reemission flux to the incident flux,for an indirect-drive inertial confinement fusion Hohlraum wall material...A self-consistent and precise method to determine the time-dependent radiative albedo,i.e.,the ratio of the reemission flux to the incident flux,for an indirect-drive inertial confinement fusion Hohlraum wall material is proposed.A specially designed symmetrical triple-cavity gold Hohlraum is used to create approximately constant and near-equilibrium uniform radiation with a peak temperature of 160 eV.The incident flux at the secondary cavity waist is obtained from flux balance analysis and from the shock velocity of a standard sample.The results agree well owing to the symmetrical radiation in the secondary cavity.A self-consistent and precise time-dependent radiative albedo is deduced from the reliable reemission flux and the incident flux,and the result from the shock velocity is found to have a smaller uncertainty than that from the multi-angle flux balance analysis,and also to agree well with the result of a simulation using the HYADES opacity.展开更多
The haloscope based on the TM_(010)mode cavity is a well-established technique for detecting QCD axions.However,the method has limitations in detecting high-mass axion due to significant volume loss in the high-freque...The haloscope based on the TM_(010)mode cavity is a well-established technique for detecting QCD axions.However,the method has limitations in detecting high-mass axion due to significant volume loss in the high-frequency cavity.Utilizing a higher-order mode cavity can effectively reduce the volume loss of the high-frequency cavity.The rotatable dielectric pieces as a tuning mechanism can compensate for the degradation of the form factor of the higher-order mode.Nevertheless,the introduction of dielectric causes additional volume loss.To address these issues,this paper proposes a novel design scheme by adding a central metal rod to the higher-order mode cavity tuned by dielectrics,which improves the performance of the haloscope due to the increased effective volume of the cavity detector.The superiority of the novel design is demonstrated by comparing its simulated performance with previous designs.Moreover,the feasibility of the scheme is verified by the full-wave simulation results of the mechanical design model.展开更多
This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this m...This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this material loss on the volumetric efficiency. The results are combined with an established backflow model to implement a backflow calculation procedure that is adaptive to wear. We use a laboratory test setup with a highly abrasive fluid and operate a pump from new to worn condition to validate our approach. The obtained measurement data show that the presented virtual sensor is capable of calculating the flow rate of a pump being subject to wear during its regular operation.展开更多
The cavity design including RF design and multi-physics analysis of the RFQ for the CAFe(Chinese Accelerator Facility for super-heavy Elements)project have been completed by the end of 2019.
文摘BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.
基金supported by the National Natural Science Foundation of China(No.51475120)Major Program of National Natural Science Foundation of China(No.U1537201)
文摘A new technology for detecting a tiny residual core in the small inner cavity of complex castings is proposed. The residual core is identified by using image recognition technology. Tracer processing and image signal processing are combined to enhance the image contrast. The relationships between the concentration of tracer, the size of the residual core, the wall thickness of the castings and the contrast were obtained. Based on the experimental data, the minimum detectable amount of residual core under different conditions was obtained. The results show that the minimum detectable amount decreases from 4.398 mg to 0.438 mg for the 1.0 mm wall thickness casting when the concentration of tracer increases from 0% to 20%. The signal-to-noise ratio(SNR) of the detection results increases by 27.010 by means of average filtering and linear point operation. The subtraction of image and image background was performed, and then the boundary extraction was carried out to obtain a clear and reliable result. The experimental results show that the non-traced residual core cannot be detected for a blade with a thickness less than 5 mm. The residual core of 1 mm thickness can be barely identified by artificial recognition after tracer processing and image processing, while the residual core of 0.6 mm thickness can be detected clearly using image recognition technology.
基金provided by the Florida International University Tropics Programthe Susan S.Levine Trust
文摘Background:Exotic parrots have established breeding populations in southeast Florida,including several species that nest in tree cavities.We aimed to determine the species identity,nest site requirements,relative nest abundance,geographic distribution,and interactions of parrots with native cavity-nesting bird species.Methods:We searched Miami-Dade County,Florida,and nearby areas for natural cavities and holes excavated by woodpeckers,recording attributes of potential nest trees.We inspected all cavities with an elevated video inspection system to determine occupancy by parrots or other birds.We mapped nearly 4000 citizen science observations of parrots in our study area corresponding to our study period,and used these to construct range maps,comparing them to our nesting observations.Results:Not all parrots reported or observed in our study area were actively breeding.Some parrots were observed at tree cavities,which previous studies have suggested is evidence of reproduction,but our inspections with an elevated video inspection system suggest they never initiated nesting attempts.Several parrot species did successfully nest in tree cavities,Red-masked Parakeets(Psittacara erythrogenys)and Orange-winged Parrots(Amazona amazonica)being the most common(n=7 and 6 nests,respectively).These two parrots had similar nesting requirements,but Orange-winged Parrots use nests with larger entrance holes,which they often enlarge.Geographic analysis of nests combined with citizen science data indicate that parrots are limited to developed areas.The most common parrots were less abundant cavity nesters than the native birds which persist in Miami’s urban areas,and far less abundant than the invasive European Starling(Sturnus vulgaris).Conclusions:Exotic parrots breeding elsewhere in the world have harmed native cavity-nesting birds through interference competition,but competitive interference in southeast Florida is minimized by the urban affinities of parrots in this region.The relative abundance and geographic distribution suggest that these parrots are unlikely to invade adjacent wilderness areas.
基金Supported by the Fund of Key Laboratory of Advanced Materials of Ministry of Education(Grant No.ADV21-20)。
文摘Fast in situ switching of magnetic vortex core in a ferromagnetic nanodisk assisted by a nanocavity,with diameter comparable to the dimension of a vortex core,is systematically investigated by changing the strength as well as the diameter of the effective circular region of the applied magnetic field.By applying a local magnetic field within a small area at the nanodisk center,fast switching time of about 35 ps is achieved with relatively low field strength(70 mT)which is beneficial for fast data reading and writing.The reason for this phenomenon is that the magnetic spins around the nanocavity is aligned along the cavity wall due to the shape anisotropy when the perpendicular field is applied,which deepens the dip around the vortex core,and thus facilitates the vortex core switching.
基金the National Natural Science Foundation of China and the Natural Science Foundation of Jiangsu Province.It was also supported in part by Young Elite Scientists Sponsorship Program by CAST.
文摘Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.
基金* The project supported by National Natural Science Foundation of China under Grant No. 10574001, the Innovation Funds of the Chinese Academy of Sciences, the Educational Developing Project Facing the Twenty-first Century, the Program of the Education Department of Anhui Province under GrantNo. 2004kj029, and the Youth Program of Fu Yang Teachers College under Grant No. 2005LQ04
文摘We propose a scheme for transferring of a two-mode entanglement of zero- or one-photon entangled states between two cavities via atom-cavity field resonant interaction. In our proposal, in order to transfer the entangled state, we only need two identical two-level atoms and a two-mode cavity for receiving the teleported state. This scheme does not require Bell-state measurement and performing any transformations to reconstruct the initial state. And the transfer can occur with 100% success probability in a simple manner. And a network for transferring of a two-mode entangled state between cavities is suggested. This scheme can also be extended to transfer N-mode entangled state of cavity.
基金support from the National Key Research and Development Program of China (2020YFA0714504,2019YFA0709100).
文摘High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.
基金Joint Fund of Research and Development Program of Henan Province,Grant/Award Number:222301420002National Natural Science Foundation of China,Grant/Award Number:U21A2064Scientific and Technological Innovation Talents in Colleges and Universities in Henan Province,Grant/Award Number:22HASTIT001。
文摘Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”
基金Supported by Innovation Research Community of National Natural Science Foundation of China(10921504)
文摘Four types of magnetic alloy cores,labeled as V1,V2,A1 and A2,were produced by Liyuan Corp.Ltd.,for the radio frequency compression cavity of HIRFL-CSRm.In this work,their permeability,quality factor (Q value) and shunt impedance were measured before installing them into the cavity.The results show that the V1,V2 and A2 have higher permeability and shunt impedance,and lower Q value,and are suitable to the radio frequency compression cavity.
基金supported by the Chinese initiative accelerator driven subcritical system and the hundred talents plan of the Chinese Academy of Sciences(No.E129841Y).
文摘To validate the design rationality of the power coupler for the RFQ cavity and minimize cavity contamination,we designed a low-loss offline conditioning cavity and conducted high-power testing.This offline cavity features two coupling ports and two tuners,operating at a frequency of 162.5 MHz with a tuning range of 3.2 MHz.Adjusting the installation angle of the coupling ring and the insertion depth of the tuner helps minimize cavity losses.We performed electromagnetic structural and multiphysics simulations,revealing a minimal theoretical power loss of 4.3%.However,when the cavity frequency varied by110 kHz,theoretical power losses increased to10%,necessitating constant tuner adjustments during conditioning.Multiphysics simulations indicated that increased cavity temperature did not affect frequency variation.Upon completion of the offline high-power conditioning platform,we measured the transmission performance,revealing a power loss of 6.3%,exceeding the theoretical calculation.Conditioning utilized efficient automatic range scanning and standing wave resonant methods.To fully condition the power coupler,a 15°phase difference between two standing wave points in the condition-ing system was necessary.Notably,the maximum continuous wave power surpassed 20 kW,exceeding the expected target.
基金Project supported by National Key Research and Development Program of China (Grant No.2022YFA1603403)。
文摘Finesse is a critical parameter for describing the characteristics of an optical enhancement cavity(OEC). This paper first presents a review of finesse measurement techniques, including a comparative analysis of the advantages, disadvantages, and potential limitations of several main methods from both theoretical and practical perspectives. A variant of the existing method called the free spectral range(FSR) modulation method is proposed and compared with three other finesse measurement methods, i.e., the fast-switching cavity ring-down(CRD) method, the rapidly swept-frequency(SF) CRD method, and the ringing effect method. A high-power OEC platform with a high finesse of approximately 16000 is built and measured with the four methods. The performance of these methods is compared, and the results show that the FSR modulation method and the fast-switching CRD method are more suitable and accurate than the other two methods for high-finesse OEC measurements. The CRD method and the ringing effect method can be implemented in open loop using simple equipment and are easy to perform. Additionally, recommendations for selecting finesse measurement methods under different conditions are proposed, which benefit the development of OEC and its applications.
基金supported by the Natural Science Foundation of Henan Province(Grant No.232102231023)。
文摘A high-performance adaptive radiative cooler comprising a multilayer-filter VO_(2)-based Fabry-Pérot(FP)cavity is proposed.The bottom FP cavity has four layers,VO_(2)/NaCl/PVC/Ag.Based on the phase transition of VO_(2),the average emissivity in the transparent window can be switched from 3.7%to 96.3%.Additionally,the average emissivity can also be adjusted with external strain to the PVC layer,providing another way to attain the desired cooling effect.An upper filter is included to block most of the solar radiation and provide a transmittance of 96.7% in the atmospheric window.At high temperature,the adaptive emitter automatically activates radiative cooling.The net cooling power is up to 156.4 W·m^(-2)at an ambient temperature of 303 K.Our adaptive emitter still exhibits stable selective emissivity at different incident angles and heat transfer coefficients.At low temperature,the radiative cooling automatically deactivates,and the average emissivity decreases to only 3.8%.Therefore,our work not only provides new insights into the design of high-performance adaptive radiative coolers but also advances the development of intelligent thermal management.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12004351).
文摘A self-consistent and precise method to determine the time-dependent radiative albedo,i.e.,the ratio of the reemission flux to the incident flux,for an indirect-drive inertial confinement fusion Hohlraum wall material is proposed.A specially designed symmetrical triple-cavity gold Hohlraum is used to create approximately constant and near-equilibrium uniform radiation with a peak temperature of 160 eV.The incident flux at the secondary cavity waist is obtained from flux balance analysis and from the shock velocity of a standard sample.The results agree well owing to the symmetrical radiation in the secondary cavity.A self-consistent and precise time-dependent radiative albedo is deduced from the reliable reemission flux and the incident flux,and the result from the shock velocity is found to have a smaller uncertainty than that from the multi-angle flux balance analysis,and also to agree well with the result of a simulation using the HYADES opacity.
基金Project supported in part by the Equipment Development Project for Scientific Research of the Chinese Academy of Sciences(Grant No.YJKYYQ20190049)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301800)the National Key R&D Program of China(Grant No.2022YFA1603904)。
文摘The haloscope based on the TM_(010)mode cavity is a well-established technique for detecting QCD axions.However,the method has limitations in detecting high-mass axion due to significant volume loss in the high-frequency cavity.Utilizing a higher-order mode cavity can effectively reduce the volume loss of the high-frequency cavity.The rotatable dielectric pieces as a tuning mechanism can compensate for the degradation of the form factor of the higher-order mode.Nevertheless,the introduction of dielectric causes additional volume loss.To address these issues,this paper proposes a novel design scheme by adding a central metal rod to the higher-order mode cavity tuned by dielectrics,which improves the performance of the haloscope due to the increased effective volume of the cavity detector.The superiority of the novel design is demonstrated by comparing its simulated performance with previous designs.Moreover,the feasibility of the scheme is verified by the full-wave simulation results of the mechanical design model.
基金Funding by Ministerium für Wirtschaft,Innovation,Digitalisierung und Energie des Landes Nordrhein-Westfalen。
文摘This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this material loss on the volumetric efficiency. The results are combined with an established backflow model to implement a backflow calculation procedure that is adaptive to wear. We use a laboratory test setup with a highly abrasive fluid and operate a pump from new to worn condition to validate our approach. The obtained measurement data show that the presented virtual sensor is capable of calculating the flow rate of a pump being subject to wear during its regular operation.
文摘The cavity design including RF design and multi-physics analysis of the RFQ for the CAFe(Chinese Accelerator Facility for super-heavy Elements)project have been completed by the end of 2019.