Cu-based materials are seldom reported as oxygen evolution reaction(OER)electrocatalysts due to their inherent electron orbital configuration,which makes them difficult to adsorb oxygen-intermediates during OER.Reason...Cu-based materials are seldom reported as oxygen evolution reaction(OER)electrocatalysts due to their inherent electron orbital configuration,which makes them difficult to adsorb oxygen-intermediates during OER.Reasonably engineering the hierarchical architectures and the electronic structures can improve the performance of Cu-based OER catalysts,such as constructing multilevel morphology,inducing the porous materials,improving the Cu valence,building heterostructures,doping heteroatoms,etc.In this work,copper-1,3,5-benzenetricarboxylate(HKUST-1)octahedra in-situ grow on the Cu nanorod(NR)-supported N-doped carbon microplates,meanwhile an active layer of Cu(OH)_(2)forms on the surface of the original conductive Cu NRs.The octahedral HKUST-1,serving as a spacer between the microplates,greatly improves the porosity and increases the available active sites,facilitating the mass transport and electron transfer,thus resulting in greatly enhanced OER performance.展开更多
Zinc ion hybrid supercapacitors(ZHS)have received much attention due to the enhanced potential window range and high specific capacity.However,the appropriate positive materials with high electrochemical performance a...Zinc ion hybrid supercapacitors(ZHS)have received much attention due to the enhanced potential window range and high specific capacity.However,the appropriate positive materials with high electrochemical performance are still a challenge.Herein,NH_(4)^(+)and glycerate anions pre-inserted Mo glycerate(N-MoG)spheres are synthesized and serve as the template to form NH_(4)^(+)intercalated Ni_(3)S_(2)/Ni_(3)O_(2)(OH)_(4)@MoS_(2)core–shell nanoflower(N-NiMo-OS)in-situ grown on nickel foam(NF)(N-NiMo-OS/NF)by sulfurization treatment.Compared with the product using traditional MoG as a template,N-NiMo-OS/NF inheriting a larger core structure from N-MoG delivers enhanced space for ions transport and volume expansion during the energy storage process,together with the synergistic effects of multi-components and the heterostructure,the as-prepared N-NiMo-OS/NF nanoflower exhibits excellent performance for the battery-type hybrid supercapacitors(BHS)and ZHS devices.Notably,the ZHS device delivers superior electrochemical performance to the BHS device,such as a higher specific capacity of 327.5 mAh·g^(−1)at 1 A·g^(−1),a preeminent energy density of 610.6 Wh·kg^(−1)at 1710 W·kg^(−1),long cycle life.The in-situ Raman,ex-situ X-ray photoelectron spectroscopy(XPS),theoretical calculation demonstrate the extra Zn^(2+)insertion/extraction storage mechanism provides enhanced electrochemical performance for ZHS device.Therefore,the dual-ion pre-inserted strategy can be extended for other advanced electrode materials in energy storage fields.展开更多
基金the National Natural Science Foundation of China(Nos.U1904215 and 21875207)the Natural Science Foundation of Jiangsu Province(No.BK20200044)the Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials(SKLPM,No.ZDSYS20210709112802010).
文摘Cu-based materials are seldom reported as oxygen evolution reaction(OER)electrocatalysts due to their inherent electron orbital configuration,which makes them difficult to adsorb oxygen-intermediates during OER.Reasonably engineering the hierarchical architectures and the electronic structures can improve the performance of Cu-based OER catalysts,such as constructing multilevel morphology,inducing the porous materials,improving the Cu valence,building heterostructures,doping heteroatoms,etc.In this work,copper-1,3,5-benzenetricarboxylate(HKUST-1)octahedra in-situ grow on the Cu nanorod(NR)-supported N-doped carbon microplates,meanwhile an active layer of Cu(OH)_(2)forms on the surface of the original conductive Cu NRs.The octahedral HKUST-1,serving as a spacer between the microplates,greatly improves the porosity and increases the available active sites,facilitating the mass transport and electron transfer,thus resulting in greatly enhanced OER performance.
基金the National Natural Science Foundation of China(Nos.21702116,51772162,and 52072197)the 111 Project of China(No.D20017)+5 种基金Shandong Provincial Key Research and Development Program,China(No.2019GSF107087)Qingdao Postdoctoral Sustentation Fund,Youth Innovation and Technology Foundation of Shandong Higher Education Institutions,China(No.2019KJC004)Outstanding Youth Foundation of Shandong Province,China(No.ZR2019JQ14)Taishan Scholar Young Talent Program(No.tsqn201909114)Major Scientific and Technological Innovation Project(No.2019JZZY020405)Major Basic Research Program of Natural Science Foundation of Shandong Province(No.ZR2020ZD09).
文摘Zinc ion hybrid supercapacitors(ZHS)have received much attention due to the enhanced potential window range and high specific capacity.However,the appropriate positive materials with high electrochemical performance are still a challenge.Herein,NH_(4)^(+)and glycerate anions pre-inserted Mo glycerate(N-MoG)spheres are synthesized and serve as the template to form NH_(4)^(+)intercalated Ni_(3)S_(2)/Ni_(3)O_(2)(OH)_(4)@MoS_(2)core–shell nanoflower(N-NiMo-OS)in-situ grown on nickel foam(NF)(N-NiMo-OS/NF)by sulfurization treatment.Compared with the product using traditional MoG as a template,N-NiMo-OS/NF inheriting a larger core structure from N-MoG delivers enhanced space for ions transport and volume expansion during the energy storage process,together with the synergistic effects of multi-components and the heterostructure,the as-prepared N-NiMo-OS/NF nanoflower exhibits excellent performance for the battery-type hybrid supercapacitors(BHS)and ZHS devices.Notably,the ZHS device delivers superior electrochemical performance to the BHS device,such as a higher specific capacity of 327.5 mAh·g^(−1)at 1 A·g^(−1),a preeminent energy density of 610.6 Wh·kg^(−1)at 1710 W·kg^(−1),long cycle life.The in-situ Raman,ex-situ X-ray photoelectron spectroscopy(XPS),theoretical calculation demonstrate the extra Zn^(2+)insertion/extraction storage mechanism provides enhanced electrochemical performance for ZHS device.Therefore,the dual-ion pre-inserted strategy can be extended for other advanced electrode materials in energy storage fields.