Recent events beneath Central America have produced excellent sets of inner core reflection (PKiKP phase) at high frequency recorded by USArray ranging from 18° to 30°. However, the amplitude of this phase...Recent events beneath Central America have produced excellent sets of inner core reflection (PKiKP phase) at high frequency recorded by USArray ranging from 18° to 30°. However, the amplitude of this phase displays considerable scatter with a factor of six or more. Such scatter has been attributed to upper-mantle scattering and the Inner Core Boundary (ICB) in combination. Here, we show that neighboring events share upper-mantle scatterers beneath the receivers, and their ratio allows a clearer image of deep earth structure. Alter confirming some of the measured variation is indeed due to deep structure, we stacked nearby traces to reduce fine scale variations which are mostly due to shallow structure. Then, the remaining relatively large scale variation pattern of PKiKP phase is caused by the inner core boundary, as demonstrated by numerical experiments. After migration of data to the 1CB, we observe a consistent image. We find such a pattern can be explained by a patch of mushy material of a few kilometers high where the material changes gradually from that of the outer core to that of the inner core.展开更多
The thermal structure of the lower mantle plays a key role in understanding the dynamic processes of the Earth's evolution and mantle convection.Because intrinsic attenuation in the lower mantle is highly sensitiv...The thermal structure of the lower mantle plays a key role in understanding the dynamic processes of the Earth's evolution and mantle convection.Because intrinsic attenuation in the lower mantle is highly sensitive to temperature,determining of the attenuation of the lower mantle could help us determine its thermal state.We attempted to constrain the attenuation of the lower mantle by measuring the amplitude ratios of p to ScP on the vertical component and s to ScS on the tangential component at short epicentral distances for seismic wave data from deep earthquakes in Northeast China.We calculated the theoretical amplitude ratios of p to ScP and s to ScS by using ray theory and the axial-symmetric spectral element method AxiSEM,as well as by considering the effects of radiation patterns,geometrical spreading,and ScP reflection coefficients.By comparing the observed amplitude ratios with the synthetic results,we constrained the quality factors as Qα≈3,000 and Qβ≈1,300 in the lower mantle beneath Northeast China,which are much larger than those in the preliminary reference Earth model(PREM)model of Qα~800 and Qβ~312.We propose that the lower mantle beneath Northeast China is relatively colder than the average mantle,resulting in weaker intrinsic attenuation and higher velocity.We estimated the temperature of the lower mantle beneath Northeast China as approximately 300–700 K colder than the global average value.展开更多
The compression of high-energy, linearly polarized pulses in a gas-filled hollow core fiber(HCF) by using a concentric phase mask is studied theoretically. Simulation results indicate that using a properly designed co...The compression of high-energy, linearly polarized pulses in a gas-filled hollow core fiber(HCF) by using a concentric phase mask is studied theoretically. Simulation results indicate that using a properly designed concentric phase mask, a40-fs input pulse centered at 800 nm with energy up to 10.0 mJ can be compressed to a full width at half maximum(FWHM) of less than 5 fs after propagating through a neon-filled HCF with a length of 1 m and diameter of 500 μm with a transmission efficiency of 67%, which is significantly higher than that without a concentric phase mask. Pulses with energy up to 20.0 mJ can also be efficiently compressed to less than 10 fs with the concentric phase mask. The higher efficiency due to the concentric phase mask can be attributed to the redistribution of the transverse intensity profile, which reduces the effect of ionization. The proposed method exhibits great potential for generating few-cycle laser pulse sources with high energy by the HCF compressor.展开更多
Different fused-core stationary phase chemistries(C18,Amide,Phenyl-hexyl and Peptide ES-C18) were used for the analysis of 21 structurally representative model peptides.In addition,the effects of the mobile phase co...Different fused-core stationary phase chemistries(C18,Amide,Phenyl-hexyl and Peptide ES-C18) were used for the analysis of 21 structurally representative model peptides.In addition,the effects of the mobile phase composition(ACN or MeOH as organic modifier;formic acid or acetic acid,as acidifying component) on the column selectivity,peak shape and overall chromatographic performance were evaluated.The RP-amide column,combined with a formic acid-acetonitrile based gradient system,performed as best.A peptide reversed-phase retention model is proposed,consisting of 5 variables:log SumAA,log Sv,clog P,log nHDon and log nHAcc.Quantitative structure-retention relationship(QSRR) models were constructed for 16 different chromatographic systems.The accuracy of this peptide retention model was demonstrated by the comparison between predicted and experimentally obtained retention times,explaining on average 86% of the variability.Moreover,using an external set of 5 validation peptides,the predictive power of the model was also demonstrated.This peptide retention model includes the novel in-silico calculated amino acid descriptor,AA,which was calculated from log P,3D-MoRSE,RDF and WHIM descriptors.展开更多
Most current lattice Boltzmann (LBM) models suffer from the deficiency that their parameters have to be obtained by fitting experimental results. In this paper, we propose a new method that integrates the molecular ...Most current lattice Boltzmann (LBM) models suffer from the deficiency that their parameters have to be obtained by fitting experimental results. In this paper, we propose a new method that integrates the molecular dynamics (MD) simulation and LBM to avoid such defect. The basic idea is to first construct a molecular model based on the actual components of the rock-fluid system, then to compute the interaction force between the rock and the fluid of different densities through the MD simulation. This calculated rock-fluid interaction force, combined with the fluid-fluid force determined from the equation of state, is then used in LBM modeling. Without parameter fitting, this study presents a new systematic approach for pore-scale modeling of multi-phase flow. We have validated this ap- proach by simulating a two-phase separation process and gas-liquid-solid three-phase contact angle. Based on an actual X-ray CT image of a reservoir core, we applied our workflow to calculate the absolute permeability of the core, vapor-liquid H20 relative permeability, and capillary pressure curves.展开更多
The amount of literature on both melting and thermal conductivity of iron at Earth’s core conditions is overwhelming and the discrepancies are very large.There is a broad range of experimental techniques each of whic...The amount of literature on both melting and thermal conductivity of iron at Earth’s core conditions is overwhelming and the discrepancies are very large.There is a broad range of experimental techniques each of which is flawed to a certain degree,which may explain the discrepancy.In this report,we present new data using a different method for determining the phase behavior and resistivity of iron in the laser-heated diamond cell by measuring the electrical resistance of both solid and liquid iron wires.The experiment avoids some of the major flaws of previous experiments,the most important of which is the detection of the onset of melting.These measurements confirm a shallow melting curve found earlier and the resistivity data imply a trend towards low thermal conductivity in the liquid outer core.展开更多
The total horizontal and vertical forces acting on a partially-perforated caisson breakwater and their phase difference are investigated in this study. The perforated breakwater sits on the rubble tilled foundation, a...The total horizontal and vertical forces acting on a partially-perforated caisson breakwater and their phase difference are investigated in this study. The perforated breakwater sits on the rubble tilled foundation, and has a rock-filled core. An analytical solution is developed based on the eigenfunction expansion and matching method to solve the wave field around the breakwater. The finite element method is used for simulating the wave-induced tlow in the rabble-filled foundation. Experiments are also conducted to study the wave forces on the perforated caissons. Numerical predictions of the present model are compared with experimental resuhs. The phase differences between the total horizontal and vertical forces are particularly analyzed by means of experimental and numerical results. The major factors that affect the wave forces are examined.展开更多
Development of an in vitro three-dimensional(3D) model that closely mimics actual environment of tissue has become extraordinarily important for anti-cancer study. In recent years, various 3D cell culture systems have...Development of an in vitro three-dimensional(3D) model that closely mimics actual environment of tissue has become extraordinarily important for anti-cancer study. In recent years, various 3D cell culture systems have been developed,with multicellular tumor spheroids being the most popular and effective model. In this work, we present a microfluidic device used as a robust platform for generating core–shell hydrogel microspheres with precisely controlled sizes and varied components of hydrogel matrix. To gain a better understanding of the governing mechanism of microsphere formation,computational models based on multiphase flow were developed to numerically model the droplet generation and velocity field evolution process with COMSOL Multiphysics software. Our modeling results show good agreement with experiments in size dependence on flow rate as well as effect of vortex flow on microsphere formation. With real-time tuning of the flow rates of aqueous phase and oil phase, tumor cells were encapsulated into the microspheres with controllable core–shell structure and different volume ratios of core(comprised of alginate, Matrigel, and/or Collagen) and shell(comprised of alginate). Viability of cells in four different hydrogel matrices were evaluated by standard acridine orange(AO) and propidium iodide(PI) staining. The proposed microfluidic system can play an important role in engineering the in vitro micro-environment of tumor spheroids to better mimic the actual in vivo 3D spatial structure of a tumor and perfect the 3D tumor models for more effective clinical therapies.展开更多
We numerically study the pulse compression approaches based on atomic or molecular gases in a hollow-core fiber.From the perspective of self-phase modulation(SPM), we give the extensive study of the SPM influence on...We numerically study the pulse compression approaches based on atomic or molecular gases in a hollow-core fiber.From the perspective of self-phase modulation(SPM), we give the extensive study of the SPM influence on a probe pulse with molecular phase modulation(MPM) effect. By comparing the two compression methods, we summarize their advantages and drawbacks to obtain the few-cycle pulses with micro- or millijoule energies. It is also shown that the double pump-probe approach can be used as a tunable dual-color source by adjusting the time delay between pump and probe pulses to proper values.展开更多
Al2O3/SiO2 ceramic core nano-composites were prepared and their microstructure was investigated by transmission electron microscope(TEM). The results show that intergranular nano-composites are achieved. The bonding...Al2O3/SiO2 ceramic core nano-composites were prepared and their microstructure was investigated by transmission electron microscope(TEM). The results show that intergranular nano-composites are achieved. The bonding between Al2O3 and SiO2 particles is well and the interface is even. Amorphous phases and nano crystals appear in the Al2O3/SiO2 ceramic core nano-composites, which both come into being during the cooling process after sintering. Glass phase does not appear between the Al2O3 and SiO2 particles and only appears among the Al2O3 particles, which can be explained with stress model. The quantity of the glass phase is not much and its influence on the high-temperature deformation of the ceramic core nano-composites is little.展开更多
In the scenery of the oil industry, the remaining resources associated with light oils have an increasingly smaller share in the natural energy resources available to man, and in return the importance of resources ass...In the scenery of the oil industry, the remaining resources associated with light oils have an increasingly smaller share in the natural energy resources available to man, and in return the importance of resources associated with heavy oils has increased significantly. One of the drawbacks of this type of oil is associated with its low mobility due to the high viscosity in reservoir conditions, making the transport in pipelines very difficult, especially through pumping methods that require high powers. Thus, the development of new techniques and optimization of some existing technologies, aiming at the commercial use of heavy oil accumulations plays an important role. A viable technique that has been </span><span "="" style="line-height:1.5;">used is the core annular flow, in which small amounts of water are injected close to the pipe wall, lubricating the oil core, reducing friction and decreasing the pressure drop during the flow. In this sense, this work aims to perform, numerically, an energetic and hydrodynamic analysis of a heavy oil-water two-phase flow, using the core-flow technique, in curved pipes, in the Ansys CFX software. Results of the velocity, pressure, and volume fraction distribution of the involved phases are presented and analyzed. It was observed that the proposed mathematical model was able to accurately represent the analyzed phenomena and that a reduction factor in the pressure drop of 28.4 was obtained as compared to the heavy oil single-phase flow.展开更多
The synthesis of CdSe/ZnS core/shell nanocrystals though aqueous phase using the coprecipitation method was reported. The influences of factors such as injection methods and dosages of precursors, reaction duration of...The synthesis of CdSe/ZnS core/shell nanocrystals though aqueous phase using the coprecipitation method was reported. The influences of factors such as injection methods and dosages of precursors, reaction duration of water-bathing and the initial CdSe:ZnS molar ratio were discussed. In comparison to the CdSe plain core nanocrystals, the CdSe/ZnS core/shell nanocrystals show much brighter photoluminescence demonstrated by the photoluminescence spectra. The epitaxial growth of the core/shell structures was verified by TEM and XRD.展开更多
Sub-micron sized phenolic epoxy resin waterborne particles were prepared by phase inversion emulsification. Micro-phase separation occurred during the curing process at high temperature. The as-prepared samples posses...Sub-micron sized phenolic epoxy resin waterborne particles were prepared by phase inversion emulsification. Micro-phase separation occurred during the curing process at high temperature. The as-prepared samples possessed one glass transition temperature (Tg) and two exothermal processes during DSC heating scannings. After being thermally treated above the exothermal peak temperature, they possessed two glass transition temperatures with the disappearance of exothermal peaks, whilst a core/shell structure was formed. This was likely related with the outward diffusion of reactive oligomers to the outer layer of particles.展开更多
Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were f...Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were forced to collide and coalesce with the Isopar oil droplets of core material in the continuous wates phase. When two kinds of oil droplets are collided and coalesced with each other, expanded polystyrene dissolved in the limonene oil may be phase-separated in the oil droplets newly formed to form the microcapsule shell, because the Isopar oil was a poor solvent for expanded polystyrene but a good solvent for the limonene oil. In the experiment, the diameter (or number) of limonene oil droplets dissolving expanded polystyrene was mainly changed, because the coalescence frequency between the droplets is strongly dependent on the number of droplets. Favorable core shell types of microcapsules with the shell thickness from 1.0 to 5.0 μm were able to be prepared under all the experimental conditions adopted here.展开更多
基金supported by NSF EAR-1053064 and CSEDI EAR-1161046 at CalTech with partial support of D. Sun at USC under EAR-0809023
文摘Recent events beneath Central America have produced excellent sets of inner core reflection (PKiKP phase) at high frequency recorded by USArray ranging from 18° to 30°. However, the amplitude of this phase displays considerable scatter with a factor of six or more. Such scatter has been attributed to upper-mantle scattering and the Inner Core Boundary (ICB) in combination. Here, we show that neighboring events share upper-mantle scatterers beneath the receivers, and their ratio allows a clearer image of deep earth structure. Alter confirming some of the measured variation is indeed due to deep structure, we stacked nearby traces to reduce fine scale variations which are mostly due to shallow structure. Then, the remaining relatively large scale variation pattern of PKiKP phase is caused by the inner core boundary, as demonstrated by numerical experiments. After migration of data to the 1CB, we observe a consistent image. We find such a pattern can be explained by a patch of mushy material of a few kilometers high where the material changes gradually from that of the outer core to that of the inner core.
基金supported by funding from the National Natural Science Foundation of China (grant no. 41904061)China Postdoctoral Science Foundation (grant no. 2018M640742)
文摘The thermal structure of the lower mantle plays a key role in understanding the dynamic processes of the Earth's evolution and mantle convection.Because intrinsic attenuation in the lower mantle is highly sensitive to temperature,determining of the attenuation of the lower mantle could help us determine its thermal state.We attempted to constrain the attenuation of the lower mantle by measuring the amplitude ratios of p to ScP on the vertical component and s to ScS on the tangential component at short epicentral distances for seismic wave data from deep earthquakes in Northeast China.We calculated the theoretical amplitude ratios of p to ScP and s to ScS by using ray theory and the axial-symmetric spectral element method AxiSEM,as well as by considering the effects of radiation patterns,geometrical spreading,and ScP reflection coefficients.By comparing the observed amplitude ratios with the synthetic results,we constrained the quality factors as Qα≈3,000 and Qβ≈1,300 in the lower mantle beneath Northeast China,which are much larger than those in the preliminary reference Earth model(PREM)model of Qα~800 and Qβ~312.We propose that the lower mantle beneath Northeast China is relatively colder than the average mantle,resulting in weaker intrinsic attenuation and higher velocity.We estimated the temperature of the lower mantle beneath Northeast China as approximately 300–700 K colder than the global average value.
基金Project supported by the National Natural Science Foundation of China(Grant No.61521093)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB1603)+1 种基金the International Science and Technology Cooperation Program of China(Grant No.2016YFE0119300)the Program of Shanghai Academic/Technology Research Leader,China(Grant No.18XD1404200)
文摘The compression of high-energy, linearly polarized pulses in a gas-filled hollow core fiber(HCF) by using a concentric phase mask is studied theoretically. Simulation results indicate that using a properly designed concentric phase mask, a40-fs input pulse centered at 800 nm with energy up to 10.0 mJ can be compressed to a full width at half maximum(FWHM) of less than 5 fs after propagating through a neon-filled HCF with a length of 1 m and diameter of 500 μm with a transmission efficiency of 67%, which is significantly higher than that without a concentric phase mask. Pulses with energy up to 20.0 mJ can also be efficiently compressed to less than 10 fs with the concentric phase mask. The higher efficiency due to the concentric phase mask can be attributed to the redistribution of the transverse intensity profile, which reduces the effect of ionization. The proposed method exhibits great potential for generating few-cycle laser pulse sources with high energy by the HCF compressor.
基金funded by a Ph.D.grant of "Institute for the Promotion of Innovation through Science and Technology in Flanders(IWT-Vlaanderen)"(No.091241 for MD and 073402 for SVD)the Special Research Fund of the Ghent University (Grant no.BOF 01J22510 for EW and BOF 01D38811 for SS)
文摘Different fused-core stationary phase chemistries(C18,Amide,Phenyl-hexyl and Peptide ES-C18) were used for the analysis of 21 structurally representative model peptides.In addition,the effects of the mobile phase composition(ACN or MeOH as organic modifier;formic acid or acetic acid,as acidifying component) on the column selectivity,peak shape and overall chromatographic performance were evaluated.The RP-amide column,combined with a formic acid-acetonitrile based gradient system,performed as best.A peptide reversed-phase retention model is proposed,consisting of 5 variables:log SumAA,log Sv,clog P,log nHDon and log nHAcc.Quantitative structure-retention relationship(QSRR) models were constructed for 16 different chromatographic systems.The accuracy of this peptide retention model was demonstrated by the comparison between predicted and experimentally obtained retention times,explaining on average 86% of the variability.Moreover,using an external set of 5 validation peptides,the predictive power of the model was also demonstrated.This peptide retention model includes the novel in-silico calculated amino acid descriptor,AA,which was calculated from log P,3D-MoRSE,RDF and WHIM descriptors.
文摘Most current lattice Boltzmann (LBM) models suffer from the deficiency that their parameters have to be obtained by fitting experimental results. In this paper, we propose a new method that integrates the molecular dynamics (MD) simulation and LBM to avoid such defect. The basic idea is to first construct a molecular model based on the actual components of the rock-fluid system, then to compute the interaction force between the rock and the fluid of different densities through the MD simulation. This calculated rock-fluid interaction force, combined with the fluid-fluid force determined from the equation of state, is then used in LBM modeling. Without parameter fitting, this study presents a new systematic approach for pore-scale modeling of multi-phase flow. We have validated this ap- proach by simulating a two-phase separation process and gas-liquid-solid three-phase contact angle. Based on an actual X-ray CT image of a reservoir core, we applied our workflow to calculate the absolute permeability of the core, vapor-liquid H20 relative permeability, and capillary pressure curves.
基金supported by the National Science Foundation (No. 1248553)
文摘The amount of literature on both melting and thermal conductivity of iron at Earth’s core conditions is overwhelming and the discrepancies are very large.There is a broad range of experimental techniques each of which is flawed to a certain degree,which may explain the discrepancy.In this report,we present new data using a different method for determining the phase behavior and resistivity of iron in the laser-heated diamond cell by measuring the electrical resistance of both solid and liquid iron wires.The experiment avoids some of the major flaws of previous experiments,the most important of which is the detection of the onset of melting.These measurements confirm a shallow melting curve found earlier and the resistivity data imply a trend towards low thermal conductivity in the liquid outer core.
文摘The total horizontal and vertical forces acting on a partially-perforated caisson breakwater and their phase difference are investigated in this study. The perforated breakwater sits on the rubble tilled foundation, and has a rock-filled core. An analytical solution is developed based on the eigenfunction expansion and matching method to solve the wave field around the breakwater. The finite element method is used for simulating the wave-induced tlow in the rabble-filled foundation. Experiments are also conducted to study the wave forces on the perforated caissons. Numerical predictions of the present model are compared with experimental resuhs. The phase differences between the total horizontal and vertical forces are particularly analyzed by means of experimental and numerical results. The major factors that affect the wave forces are examined.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474345,11674043,and 11604030)the Fundamental and Advanced Research Program of Chongqing(Grant No.cstc2018jcyjAX0338)
文摘Development of an in vitro three-dimensional(3D) model that closely mimics actual environment of tissue has become extraordinarily important for anti-cancer study. In recent years, various 3D cell culture systems have been developed,with multicellular tumor spheroids being the most popular and effective model. In this work, we present a microfluidic device used as a robust platform for generating core–shell hydrogel microspheres with precisely controlled sizes and varied components of hydrogel matrix. To gain a better understanding of the governing mechanism of microsphere formation,computational models based on multiphase flow were developed to numerically model the droplet generation and velocity field evolution process with COMSOL Multiphysics software. Our modeling results show good agreement with experiments in size dependence on flow rate as well as effect of vortex flow on microsphere formation. With real-time tuning of the flow rates of aqueous phase and oil phase, tumor cells were encapsulated into the microspheres with controllable core–shell structure and different volume ratios of core(comprised of alginate, Matrigel, and/or Collagen) and shell(comprised of alginate). Viability of cells in four different hydrogel matrices were evaluated by standard acridine orange(AO) and propidium iodide(PI) staining. The proposed microfluidic system can play an important role in engineering the in vitro micro-environment of tumor spheroids to better mimic the actual in vivo 3D spatial structure of a tumor and perfect the 3D tumor models for more effective clinical therapies.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11204328,61221064,61078037,11127901,11134010,and 61205208)the National Basic Research Program of China(Grant No.2011CB808101)the Natural Science Foundation of Shanghai,China(Grant No.13ZR1414800)
文摘We numerically study the pulse compression approaches based on atomic or molecular gases in a hollow-core fiber.From the perspective of self-phase modulation(SPM), we give the extensive study of the SPM influence on a probe pulse with molecular phase modulation(MPM) effect. By comparing the two compression methods, we summarize their advantages and drawbacks to obtain the few-cycle pulses with micro- or millijoule energies. It is also shown that the double pump-probe approach can be used as a tunable dual-color source by adjusting the time delay between pump and probe pulses to proper values.
文摘Al2O3/SiO2 ceramic core nano-composites were prepared and their microstructure was investigated by transmission electron microscope(TEM). The results show that intergranular nano-composites are achieved. The bonding between Al2O3 and SiO2 particles is well and the interface is even. Amorphous phases and nano crystals appear in the Al2O3/SiO2 ceramic core nano-composites, which both come into being during the cooling process after sintering. Glass phase does not appear between the Al2O3 and SiO2 particles and only appears among the Al2O3 particles, which can be explained with stress model. The quantity of the glass phase is not much and its influence on the high-temperature deformation of the ceramic core nano-composites is little.
文摘In the scenery of the oil industry, the remaining resources associated with light oils have an increasingly smaller share in the natural energy resources available to man, and in return the importance of resources associated with heavy oils has increased significantly. One of the drawbacks of this type of oil is associated with its low mobility due to the high viscosity in reservoir conditions, making the transport in pipelines very difficult, especially through pumping methods that require high powers. Thus, the development of new techniques and optimization of some existing technologies, aiming at the commercial use of heavy oil accumulations plays an important role. A viable technique that has been </span><span "="" style="line-height:1.5;">used is the core annular flow, in which small amounts of water are injected close to the pipe wall, lubricating the oil core, reducing friction and decreasing the pressure drop during the flow. In this sense, this work aims to perform, numerically, an energetic and hydrodynamic analysis of a heavy oil-water two-phase flow, using the core-flow technique, in curved pipes, in the Ansys CFX software. Results of the velocity, pressure, and volume fraction distribution of the involved phases are presented and analyzed. It was observed that the proposed mathematical model was able to accurately represent the analyzed phenomena and that a reduction factor in the pressure drop of 28.4 was obtained as compared to the heavy oil single-phase flow.
基金the National Natural Science Foundation of China (No. 50572072)Nano Special Fouds from Science and Technology Commission of Shanghai Municipality (No. 0852nm05200)
文摘The synthesis of CdSe/ZnS core/shell nanocrystals though aqueous phase using the coprecipitation method was reported. The influences of factors such as injection methods and dosages of precursors, reaction duration of water-bathing and the initial CdSe:ZnS molar ratio were discussed. In comparison to the CdSe plain core nanocrystals, the CdSe/ZnS core/shell nanocrystals show much brighter photoluminescence demonstrated by the photoluminescence spectra. The epitaxial growth of the core/shell structures was verified by TEM and XRD.
基金This work was financially supported by the National Natural Science Foundation of China(No.20104008).
文摘Sub-micron sized phenolic epoxy resin waterborne particles were prepared by phase inversion emulsification. Micro-phase separation occurred during the curing process at high temperature. The as-prepared samples possessed one glass transition temperature (Tg) and two exothermal processes during DSC heating scannings. After being thermally treated above the exothermal peak temperature, they possessed two glass transition temperatures with the disappearance of exothermal peaks, whilst a core/shell structure was formed. This was likely related with the outward diffusion of reactive oligomers to the outer layer of particles.
文摘Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were forced to collide and coalesce with the Isopar oil droplets of core material in the continuous wates phase. When two kinds of oil droplets are collided and coalesced with each other, expanded polystyrene dissolved in the limonene oil may be phase-separated in the oil droplets newly formed to form the microcapsule shell, because the Isopar oil was a poor solvent for expanded polystyrene but a good solvent for the limonene oil. In the experiment, the diameter (or number) of limonene oil droplets dissolving expanded polystyrene was mainly changed, because the coalescence frequency between the droplets is strongly dependent on the number of droplets. Favorable core shell types of microcapsules with the shell thickness from 1.0 to 5.0 μm were able to be prepared under all the experimental conditions adopted here.