A novel core-shell structure Ag@Al2O3 nano-particles were synthesized and doped into polyimide as conductive fillers to prepare the composite films with high dielectric properties and low dielectric loss. The morpholo...A novel core-shell structure Ag@Al2O3 nano-particles were synthesized and doped into polyimide as conductive fillers to prepare the composite films with high dielectric properties and low dielectric loss. The morphology and structures of the Ag@Al2O3 nano-particles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-visible spectroscopy. All the results proved that the Ag@Al2O3 nano-parficles had a typical core-shell structure, for the Ag particles were coated by Al2O3 shell and the average sizes ofAg@Al2O3 particles were between 30 to 150 nm. The as-prepared Ag@Al2O3 nanoparticles were doped into the polyimide with different mass fractions to fabricate the Ag@Al2O3/PI composite films via in-situ polymerization process. SEM analysis of composite films showed that the Ag@Al2O3 nano- particles homogeneously dispersed in polyimide matrix with nanoseale. As dielectric materials for electronic packaging systems, the Ag@Al2O3/PI composites exhibited appropriate mechanical properties and erthaneed dielectric properties, including greatly enhanced dielectric constant and just a slight increase in dielectric loss. These improvements were attributed to the core-shell structure of fillers and their fine dispersion in the PI matrix.展开更多
In a simple ethanol-water system,the magnetic α-Fe nanoparticles(with an average diameter of 10-40 nm)were prepared by reduction of Fe2 +using potassium borohydride in the presence of surfactant.Then the shell was fo...In a simple ethanol-water system,the magnetic α-Fe nanoparticles(with an average diameter of 10-40 nm)were prepared by reduction of Fe2 +using potassium borohydride in the presence of surfactant.Then the shell was formed by hydrolysis-condensation polymerization of tetraethylorthosilicate(TEOS)on the surface of the Fe particles.The samples were characterized by XRD,TEM,SAED,TG-DSC and VSM.The results indicate that a thin film of silica is coated on the surface of Fe particles through a Si-O-Fe bond.The coated shell of silica can effectively protect the Fe cores from being oxidized.展开更多
Developing low-cost, high-performance catalysts is of fundamental significance for electrochemical energy conversion and storage. In recent years, metal@carbon core@shell nanocomposites have emerged as a unique class ...Developing low-cost, high-performance catalysts is of fundamental significance for electrochemical energy conversion and storage. In recent years, metal@carbon core@shell nanocomposites have emerged as a unique class of functional nanomaterials that show apparent electrocatalytic activity towards a range of reactions, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and CO2 reduction reaction, that are important in water splitting, fuel cells and metal-air batteries. The activity is primarily attributed to interfacial charge transfer from the metal core to the carbon shell that manipulate the electronic interactions between the catalyst surface and reaction intermediates, and varies with the structures and morphologies of the metal core(elemental composition, core size, etc.) and carbon shell(doping,layer thickness, etc.). Further manipulation can be achieved by the incorporation of a third structural component. A perspective is also included highlighting the current gap between theoretical modeling and experimental results, and technical challenges for future research.展开更多
LaF^3+ Yb^3+ , Er^3+ nanoparticles were successfully synthesized using solvothermal treatment, and LaF^3+ Yb^3+ , Er^3+/SiO2 core/shell nanoparticles were also prepared with reverse microemulsion technique. The ...LaF^3+ Yb^3+ , Er^3+ nanoparticles were successfully synthesized using solvothermal treatment, and LaF^3+ Yb^3+ , Er^3+/SiO2 core/shell nanoparticles were also prepared with reverse microemulsion technique. The crystal structure, morphology and photoluminescence properties of as-prepared core/shell nanoparticles were in- vestigated by X-ray diffraction, transmission electron microscopy and fluorescence spectrophotometer. The re- sults showed thatLaF^3+ Yb^3+ , Er^3+ nanoparticles are of hexagonal structure and SiO2 shell is amorphous. The size ofLaF^3+ Yb^3+ , Er^3+. nanoparticles is 13 nm and the LaF^3+ Yb^3+ , Er^3+/SiO2 nanoparticles present clearly a core/shell structure with 12 nm shell thickness. The solubility of LaF^3+ Yb^3+ , Er^3+ nanocrystals in water and the biocompatibility are both improved by the SiO2 shell. The upconversion luminescence spectra suggested that the SiO~ shell has small effect on the upconversion luminescence properties of the LaF^3+ Yb^3+ , Er^3+ nanocrys- tals. The core/shell structure LaF^3+ Yb^3+ , Er^3+ /SiO2. nanopartlcles are expected to be used in biological appli- cations.展开更多
The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The ef...The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The effects of solution pH,initial concentration of Pb2+ions,contact time,and temperature on the amount of Pb2+adsorbed were investigated.Adsorption isotherms,adsorption kinetics,and thermodynamic analysis were also studied.The results showed that the maximum adsorption capacity of the Fe3O4@SiO2@DMSA composite is 50.5 mg/g at 298 K,which is higher than that of Fe3O4 and Fe3O4@SiO2 magnetic nanoparticles.The adsorption process agreed well with Langmuir adsorption isotherm models and pseudo second-order kinetics.The thermodynamic analysis revealed that the adsorption was spontaneous,endothermic and energetically driven in nature.展开更多
In this study,the buckling analysis of a Graphene oxide powder reinforced(GOPR)nanocomposite shell is investigated.The effective material properties of the nanocomposite are estimated through Halpin-Tsai micromechanic...In this study,the buckling analysis of a Graphene oxide powder reinforced(GOPR)nanocomposite shell is investigated.The effective material properties of the nanocomposite are estimated through Halpin-Tsai micromechanical scheme.Three distribution types of GOPs are considered,namely uniform,X and O.Also,a first-order shear deformation shell theory is incorporated with the principle of virtual work to derive the governing differential equations of the problem.The governing equations are solved via Galerkin’s method,which is a powerful analytical method for static and dynamic problems.Comparison study is performed to verify the present formulation with those of previous data.New results for the buckling load of GOPR nanocomposite shells are presented regarding for different values of circumferential wave number.Besides,the influences of weight fraction of nanofillers,length and radius to thickness ratios and elastic foundation on the critical buckling loads of GOP-reinforced nanocomposite shells are explored.展开更多
Nanostructural gold/polyaniline core/shell composite particles on conducting electrode ITO were successfully prepared via electrochemical polymerization of aniline based on 4-aminothiophenol (4-ATP) capped Au nanopart...Nanostructural gold/polyaniline core/shell composite particles on conducting electrode ITO were successfully prepared via electrochemical polymerization of aniline based on 4-aminothiophenol (4-ATP) capped Au nanoparticles. The new approach to the fabrication included three steps: preparation of gold nanoparticles as core by pulse electrodeposition; formation of ATP monolayer on the gold particle surface, which served as a binder and an initiator; polymerization of aniline monomer initiated by ATP molecules under controlled voltage lower than the voltammetric threshold of aniline polymerization, which assured the formation of polyaniline shell film occurred on gold particles selectively. Topographic images were also studied by AFM, which indicated the diameter of gold nanoparticles were around 250 nm. Coulometry characterization confirmed the shell thickness of polyaniline film was about 30 nm. A possible formation mechanism of the Au/polyaniline core-shell nanocomposites was also proposed. The novel as-prepared core-shell nanoparticles have potential application in constructing biosensor when bioactive enzymes are absorbed or embedded in polyaniline shell film.展开更多
This paper describes the formation of magnetic and fluorescent nanocomposite particles which consist of superparamagnetic Fe3O4 core, SiO2 shell and organic dye (FITC) coating layer on their surface. The obtained na...This paper describes the formation of magnetic and fluorescent nanocomposite particles which consist of superparamagnetic Fe3O4 core, SiO2 shell and organic dye (FITC) coating layer on their surface. The obtained nanocomposites possess typical superparamagnetism and exhibit clear green fluorescence image. And their fluorescence emission is pH-dependent, which would be applied to pH sensing. ?2009 Yu Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All fights reserved.展开更多
Since the multi-layered structures are widely used nowadays, and due to interesting applications of cylindrical shells, this study is dedicated to analyzing free vibrational behaviors of functionally graded saturated ...Since the multi-layered structures are widely used nowadays, and due to interesting applications of cylindrical shells, this study is dedicated to analyzing free vibrational behaviors of functionally graded saturated porous micro cylindrical shells with two nanocomposite skins. Based on Biot's assumptions, constitutive relations for the core are presented and effective properties of the skins are determined via the rule of mixture. A sinusoidal theory is used to capture the shear deformation effects, and to account for the scale effects, the modified couple stress theory is employed which suggests a material length-scale parameter for predicting the results in small-dimension. With the aid of extended form of Hamilton's principle for dynamic systems, differential equations of motion are extracted. Fourier series functions are used to obtain natural frequencies and after validating them, a set of parametric studies are carried out. The results show the significant effects of porosity and Skempton coefficient, pores placement patterns, CNTs addition and distribution patterns, temperature variations, material length-scale parameter and viscoelastic medium on the natural frequencies of the microstructure. The outcomes of this work could be used to design and manufacture more reliable micro cylindrical structures in thermo-dynamical environments.展开更多
A facile step-by-step approach is developed for synthesizing the high-efficiency and magnetic recyclable Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites.This method involves coating Fe2O3 nanorods with a uniform silica l...A facile step-by-step approach is developed for synthesizing the high-efficiency and magnetic recyclable Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites.This method involves coating Fe2O3 nanorods with a uniform silica layer,reduction in 10%H2/Ar atmosphere to transform the Fe2O3 into magnetic Fe3O4,and finally depositing Ag@Ni core-shell nanoparticles on the L-lysine modified surface of Fe3O4@SiO2 nanorods.The fabricated nanocomposites are further characterized by x-ray diffraction,transmission electron microscopy,scanning electron microscope,Fourier transform infrared spectroscopy,and inductively coupled plasma mass spectroscopy.The Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites exhibit remarkably higher catalytic efficiency than monometallic Fe3O4@SiO2@Ag nanocomposites toward the degradation of Rhodamine B(RhB) at room temperature,and maintain superior catalytic activity even after six cycles.In addition,these samples could be easily separated from the catalytic system by an external magnet and reused,which shows great potential applications in treating waste water.展开更多
Semiconductor-based photocatalysts have been extensively studied for oxidative photodestruction of organic pollutants in wastewaters, releasing non-toxic substances such as Azo dyes. Various synthesized catalyst speci...Semiconductor-based photocatalysts have been extensively studied for oxidative photodestruction of organic pollutants in wastewaters, releasing non-toxic substances such as Azo dyes. Various synthesized catalyst specimens were characterized to determine the correlation between preparation conditions (catalyst type, dopant, microstructure, preparation routs, optical and physico-chemical properties) on the photocatalytic activity. Some researchers focused on the process parameters to optimize them to reach higher photoactivity. The specific surface areas, crystalline size, charge and pretreatment of the surface have significant effects on the physical and photocatalytic properties of the semiconductors. The surface sites of catalyst (TiO2) were modified by doping ZnS nanoparticles in the form of Core-Shell structure and the photocatalytic activities were determined by using color degradation and hydrogen production tests. The dye adsorption isotherms of photocatalyst were determined using UV-Vis spectroscopy. The specific surface properties were determined from BET, Zeta meter and Particle size analyzer tests. Photocatalytic decolorization of AR and water splitting test were applied to understand the relation between the surface properties and the photocatalytic activity. The result indicated that core-shell prepared samples had different surface suitable sites to cooperate in photocatalytic reaction.展开更多
An analytical approach is proposed to study the postbuckling of circular cylindrical shells subject to axial compression and lateral pressure made of functionally graded graphene platelet-reinforced polymer composite ...An analytical approach is proposed to study the postbuckling of circular cylindrical shells subject to axial compression and lateral pressure made of functionally graded graphene platelet-reinforced polymer composite (FG-GPL-RPC). The governing equations are obtained in the context of the classical Donnell shell theory by the von K′arm′an nonlinear relations. Then, based on the Ritz energy method, an analytical solution approach is used to trace the nonlinear postbuckling path of the shell. The effects of several parameters such as the weight fraction of the graphene platelet (GPL), the geometrical properties, and distribution patterns of the GPL on the postbuckling characteristics of the FG-GPL-RPC shell are analyzed.展开更多
The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic found...The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.展开更多
A simple method for the synthesis of carbon-coated Ni/SiO2 core/shell nanocomposites is reported. The Ni nanoparticles were coated with silica layers via a combined procedure of sol-gel fabrication and hydrogen reduct...A simple method for the synthesis of carbon-coated Ni/SiO2 core/shell nanocomposites is reported. The Ni nanoparticles were coated with silica layers via a combined procedure of sol-gel fabrication and hydrogen reduction prior to carbon coating via acetylene decomposition at an appropriate temperature. It was found that the anti-acid ability of the Ni/SiO2 composites was greatly enhanced after carbon coating. The results of magnetization measurement show that the real part (μ′) of complex permeability of the as-obtained sample is almost independent of frequency, and the imaginary part (μ″) stays small up to a frequency of 1 GHz. The encapsulation of Ni particles with SiO2 results in the rise of Ni nanoparticles resistivity. The outcome is the reduction in effect of eddy current at high frequency, making the real part μ′ almost constant and the imaginary part μ″ very small. Thus, this simple method may be effective for preparing composites of soft magnetic properties, especially in the high-frequency range.展开更多
基金Funded by the National Natural Science Foundation of China(No.51177030)the National Key Basic Research Development Plan(No.2012CB723308)the Natural Science Foundation of Heilongjiang Province of China(No.E201224)
文摘A novel core-shell structure Ag@Al2O3 nano-particles were synthesized and doped into polyimide as conductive fillers to prepare the composite films with high dielectric properties and low dielectric loss. The morphology and structures of the Ag@Al2O3 nano-particles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-visible spectroscopy. All the results proved that the Ag@Al2O3 nano-parficles had a typical core-shell structure, for the Ag particles were coated by Al2O3 shell and the average sizes ofAg@Al2O3 particles were between 30 to 150 nm. The as-prepared Ag@Al2O3 nanoparticles were doped into the polyimide with different mass fractions to fabricate the Ag@Al2O3/PI composite films via in-situ polymerization process. SEM analysis of composite films showed that the Ag@Al2O3 nano- particles homogeneously dispersed in polyimide matrix with nanoseale. As dielectric materials for electronic packaging systems, the Ag@Al2O3/PI composites exhibited appropriate mechanical properties and erthaneed dielectric properties, including greatly enhanced dielectric constant and just a slight increase in dielectric loss. These improvements were attributed to the core-shell structure of fillers and their fine dispersion in the PI matrix.
文摘In a simple ethanol-water system,the magnetic α-Fe nanoparticles(with an average diameter of 10-40 nm)were prepared by reduction of Fe2 +using potassium borohydride in the presence of surfactant.Then the shell was formed by hydrolysis-condensation polymerization of tetraethylorthosilicate(TEOS)on the surface of the Fe particles.The samples were characterized by XRD,TEM,SAED,TG-DSC and VSM.The results indicate that a thin film of silica is coated on the surface of Fe particles through a Si-O-Fe bond.The coated shell of silica can effectively protect the Fe cores from being oxidized.
基金National Science Foundation (CHE1710408) for partial support of the work
文摘Developing low-cost, high-performance catalysts is of fundamental significance for electrochemical energy conversion and storage. In recent years, metal@carbon core@shell nanocomposites have emerged as a unique class of functional nanomaterials that show apparent electrocatalytic activity towards a range of reactions, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and CO2 reduction reaction, that are important in water splitting, fuel cells and metal-air batteries. The activity is primarily attributed to interfacial charge transfer from the metal core to the carbon shell that manipulate the electronic interactions between the catalyst surface and reaction intermediates, and varies with the structures and morphologies of the metal core(elemental composition, core size, etc.) and carbon shell(doping,layer thickness, etc.). Further manipulation can be achieved by the incorporation of a third structural component. A perspective is also included highlighting the current gap between theoretical modeling and experimental results, and technical challenges for future research.
文摘LaF^3+ Yb^3+ , Er^3+ nanoparticles were successfully synthesized using solvothermal treatment, and LaF^3+ Yb^3+ , Er^3+/SiO2 core/shell nanoparticles were also prepared with reverse microemulsion technique. The crystal structure, morphology and photoluminescence properties of as-prepared core/shell nanoparticles were in- vestigated by X-ray diffraction, transmission electron microscopy and fluorescence spectrophotometer. The re- sults showed thatLaF^3+ Yb^3+ , Er^3+ nanoparticles are of hexagonal structure and SiO2 shell is amorphous. The size ofLaF^3+ Yb^3+ , Er^3+. nanoparticles is 13 nm and the LaF^3+ Yb^3+ , Er^3+/SiO2 nanoparticles present clearly a core/shell structure with 12 nm shell thickness. The solubility of LaF^3+ Yb^3+ , Er^3+ nanocrystals in water and the biocompatibility are both improved by the SiO2 shell. The upconversion luminescence spectra suggested that the SiO~ shell has small effect on the upconversion luminescence properties of the LaF^3+ Yb^3+ , Er^3+ nanocrys- tals. The core/shell structure LaF^3+ Yb^3+ , Er^3+ /SiO2. nanopartlcles are expected to be used in biological appli- cations.
基金Project(2013DFA51290)supported by International S&T Cooperation Program of China
文摘The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The effects of solution pH,initial concentration of Pb2+ions,contact time,and temperature on the amount of Pb2+adsorbed were investigated.Adsorption isotherms,adsorption kinetics,and thermodynamic analysis were also studied.The results showed that the maximum adsorption capacity of the Fe3O4@SiO2@DMSA composite is 50.5 mg/g at 298 K,which is higher than that of Fe3O4 and Fe3O4@SiO2 magnetic nanoparticles.The adsorption process agreed well with Langmuir adsorption isotherm models and pseudo second-order kinetics.The thermodynamic analysis revealed that the adsorption was spontaneous,endothermic and energetically driven in nature.
文摘In this study,the buckling analysis of a Graphene oxide powder reinforced(GOPR)nanocomposite shell is investigated.The effective material properties of the nanocomposite are estimated through Halpin-Tsai micromechanical scheme.Three distribution types of GOPs are considered,namely uniform,X and O.Also,a first-order shear deformation shell theory is incorporated with the principle of virtual work to derive the governing differential equations of the problem.The governing equations are solved via Galerkin’s method,which is a powerful analytical method for static and dynamic problems.Comparison study is performed to verify the present formulation with those of previous data.New results for the buckling load of GOPR nanocomposite shells are presented regarding for different values of circumferential wave number.Besides,the influences of weight fraction of nanofillers,length and radius to thickness ratios and elastic foundation on the critical buckling loads of GOP-reinforced nanocomposite shells are explored.
基金Project supported by the Start up Fund for Returned Overseas Chinese Scholars at CSU, China
文摘Nanostructural gold/polyaniline core/shell composite particles on conducting electrode ITO were successfully prepared via electrochemical polymerization of aniline based on 4-aminothiophenol (4-ATP) capped Au nanoparticles. The new approach to the fabrication included three steps: preparation of gold nanoparticles as core by pulse electrodeposition; formation of ATP monolayer on the gold particle surface, which served as a binder and an initiator; polymerization of aniline monomer initiated by ATP molecules under controlled voltage lower than the voltammetric threshold of aniline polymerization, which assured the formation of polyaniline shell film occurred on gold particles selectively. Topographic images were also studied by AFM, which indicated the diameter of gold nanoparticles were around 250 nm. Coulometry characterization confirmed the shell thickness of polyaniline film was about 30 nm. A possible formation mechanism of the Au/polyaniline core-shell nanocomposites was also proposed. The novel as-prepared core-shell nanoparticles have potential application in constructing biosensor when bioactive enzymes are absorbed or embedded in polyaniline shell film.
基金supported by the National Natural Science Foundation of China(Nos.60571031,60501009,30870679)the National Basic Research Program of China(Nos.2006CB933206,2006CB705606)+1 种基金Open Project Foundation of Laboratory of Solid State Microstructures of Nanjing Universitythe program for New Century Excellent Talents in University,the Chinese Ministry of Education,are greatly appreciated.
文摘This paper describes the formation of magnetic and fluorescent nanocomposite particles which consist of superparamagnetic Fe3O4 core, SiO2 shell and organic dye (FITC) coating layer on their surface. The obtained nanocomposites possess typical superparamagnetism and exhibit clear green fluorescence image. And their fluorescence emission is pH-dependent, which would be applied to pH sensing. ?2009 Yu Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All fights reserved.
文摘Since the multi-layered structures are widely used nowadays, and due to interesting applications of cylindrical shells, this study is dedicated to analyzing free vibrational behaviors of functionally graded saturated porous micro cylindrical shells with two nanocomposite skins. Based on Biot's assumptions, constitutive relations for the core are presented and effective properties of the skins are determined via the rule of mixture. A sinusoidal theory is used to capture the shear deformation effects, and to account for the scale effects, the modified couple stress theory is employed which suggests a material length-scale parameter for predicting the results in small-dimension. With the aid of extended form of Hamilton's principle for dynamic systems, differential equations of motion are extracted. Fourier series functions are used to obtain natural frequencies and after validating them, a set of parametric studies are carried out. The results show the significant effects of porosity and Skempton coefficient, pores placement patterns, CNTs addition and distribution patterns, temperature variations, material length-scale parameter and viscoelastic medium on the natural frequencies of the microstructure. The outcomes of this work could be used to design and manufacture more reliable micro cylindrical structures in thermo-dynamical environments.
基金supported by the National Basic Research Program of China(Grant No.2015CB921502)the National Natural Science Foundation of China(Grant Nos.11474184 and 11174183)+1 种基金the 111 Project(Grant No.B13029)the Fundamental Research Funds of Shandong University,China
文摘A facile step-by-step approach is developed for synthesizing the high-efficiency and magnetic recyclable Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites.This method involves coating Fe2O3 nanorods with a uniform silica layer,reduction in 10%H2/Ar atmosphere to transform the Fe2O3 into magnetic Fe3O4,and finally depositing Ag@Ni core-shell nanoparticles on the L-lysine modified surface of Fe3O4@SiO2 nanorods.The fabricated nanocomposites are further characterized by x-ray diffraction,transmission electron microscopy,scanning electron microscope,Fourier transform infrared spectroscopy,and inductively coupled plasma mass spectroscopy.The Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites exhibit remarkably higher catalytic efficiency than monometallic Fe3O4@SiO2@Ag nanocomposites toward the degradation of Rhodamine B(RhB) at room temperature,and maintain superior catalytic activity even after six cycles.In addition,these samples could be easily separated from the catalytic system by an external magnet and reused,which shows great potential applications in treating waste water.
文摘Semiconductor-based photocatalysts have been extensively studied for oxidative photodestruction of organic pollutants in wastewaters, releasing non-toxic substances such as Azo dyes. Various synthesized catalyst specimens were characterized to determine the correlation between preparation conditions (catalyst type, dopant, microstructure, preparation routs, optical and physico-chemical properties) on the photocatalytic activity. Some researchers focused on the process parameters to optimize them to reach higher photoactivity. The specific surface areas, crystalline size, charge and pretreatment of the surface have significant effects on the physical and photocatalytic properties of the semiconductors. The surface sites of catalyst (TiO2) were modified by doping ZnS nanoparticles in the form of Core-Shell structure and the photocatalytic activities were determined by using color degradation and hydrogen production tests. The dye adsorption isotherms of photocatalyst were determined using UV-Vis spectroscopy. The specific surface properties were determined from BET, Zeta meter and Particle size analyzer tests. Photocatalytic decolorization of AR and water splitting test were applied to understand the relation between the surface properties and the photocatalytic activity. The result indicated that core-shell prepared samples had different surface suitable sites to cooperate in photocatalytic reaction.
文摘An analytical approach is proposed to study the postbuckling of circular cylindrical shells subject to axial compression and lateral pressure made of functionally graded graphene platelet-reinforced polymer composite (FG-GPL-RPC). The governing equations are obtained in the context of the classical Donnell shell theory by the von K′arm′an nonlinear relations. Then, based on the Ritz energy method, an analytical solution approach is used to trace the nonlinear postbuckling path of the shell. The effects of several parameters such as the weight fraction of the graphene platelet (GPL), the geometrical properties, and distribution patterns of the GPL on the postbuckling characteristics of the FG-GPL-RPC shell are analyzed.
文摘The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.
基金Supported by the Jiangsu Postdoctoral Foundation of Jiangsu Provincethe Major Project of National Basic Research Program of China (Grant No.2005CB623605)
文摘A simple method for the synthesis of carbon-coated Ni/SiO2 core/shell nanocomposites is reported. The Ni nanoparticles were coated with silica layers via a combined procedure of sol-gel fabrication and hydrogen reduction prior to carbon coating via acetylene decomposition at an appropriate temperature. It was found that the anti-acid ability of the Ni/SiO2 composites was greatly enhanced after carbon coating. The results of magnetization measurement show that the real part (μ′) of complex permeability of the as-obtained sample is almost independent of frequency, and the imaginary part (μ″) stays small up to a frequency of 1 GHz. The encapsulation of Ni particles with SiO2 results in the rise of Ni nanoparticles resistivity. The outcome is the reduction in effect of eddy current at high frequency, making the real part μ′ almost constant and the imaginary part μ″ very small. Thus, this simple method may be effective for preparing composites of soft magnetic properties, especially in the high-frequency range.