Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(L...Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs.展开更多
This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueo...This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueous solutions.The Nb_(2)O_(5) nanorods were vertically grown using a hydrothermal process on a base electrospun nanofibrous membrane made of polyacrylonitrile/polyvinylidene fluoride/ammonium niobate(V)oxalate hydrate(Nb_(2)O_(5)@PAN/PVDF/ANO).They were characterized using field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD)analysis,and Fourier transform infrared(FTIR)spectroscopy.These composite nanofibers possessed a narrow optical bandgap energy of 3.31 eV and demonstrated an MB degradation efficiency of 96%after 480 min contact time.The pseudo-first-order kinetic study was also conducted,in which Nb_(2)O_(5)@PAN/PVDF/ANO nanofibers have kinetic constant values of 1.29×10^(-2) min^(-1) and 0.30×10^(-2) min^(-1) for adsorption and photocatalytic degradation of MB aqueous solutions,respectively.These values are 17.7 and 7.8 times greater than those of PAN/PVDF/ANO nanofibers without Nb_(2)O_(5) nanostructures.Besides their outstanding photocatalytic performance,the developed membrane materials exhibit advantageous characteristics in recycling,which subsequently widen their practical use in environmental remediation applications.展开更多
The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)R...The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)RRs)in solid oxide elec-trolysis cells(SOECs).However,practical appli-cation of nanofiber-based electrodes faces chal-lenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte.To tackle this challenge,a novel hybrid nanofiber electrode,La_(0.6)Sr_(0.4)Co_(0.15)Fe_(0.8)Pd_(0.05)O_(3-δ)(H-LSCFP),is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique.After consecutive treatment in 100% H_(2) and CO_(2) at 700°C,LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface,enhancing CO_(2) adsorption.The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm^(-2) in CO_(2) at 800°C and 1.5 V,setting a new benchmark among reported nanofiber-based electrodes.Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO_(2)RR.The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure,paving the way for further advancements and nanofiber applications in CO_(2)-SOECs.展开更多
Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we...Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR.展开更多
Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of...Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of the C/C composites was investigated by detailed analyses of destructive process. The results show that there is a sharp increase in the flexural load-displacement curve in the axial direction of the CNF-C/C composites, followed by a serrated yielding phenomenon similar to the plastic materials. The failure mode of the C/C composites modified with in situ grown CNFs is changed from the pull-out of single fiber to the breaking of fiber bundles. The existence of interfacial layer composed by middle-textured pyrocarbon, CNFs and high-textured pyrocarbon can block the crack propagation and change the propagation direction of the main crack, which leads to the higher flexural strength and modulus of C/C composites.展开更多
SnO2 nanofibers were synthesized by electrospinning and modified with Co3O4 via impregnation in this work. Chemical composition and morphology of the nanofibers were system- atically characterized, and their gas sensi...SnO2 nanofibers were synthesized by electrospinning and modified with Co3O4 via impregnation in this work. Chemical composition and morphology of the nanofibers were system- atically characterized, and their gas sensing properties were investigated. Results showed that Co3O4 modification significantly enhanced the sensing performance of SnO2 nanofibers to ethanol gas. For a sample with 1.2 mol% Co3O4, the response to 100 ppm ethanol was 38.0 at 300 ℃, about 6.7 times larger than that of SnO2 nanofibers. In addition, the response/recovery time was also greatly reduced. A power-law dependence of the sensor response on the ethanol concentration as well as excellent ethanol selectivity was observed for the Co3O4/SnO2 sensor. The enhanced ethanol sensing performance may be attributed to the formation of p-n heterojunctions between the two oxides.展开更多
Electrospinning technique was used to fabricate PVP/Ce(NO3)3 composite microfibers. Different morphological CeO2 nanofibers were obtained by calcination of the PVP/Ce(NO3)3 composite microfibers and were character...Electrospinning technique was used to fabricate PVP/Ce(NO3)3 composite microfibers. Different morphological CeO2 nanofibers were obtained by calcination of the PVP/Ce(NO3)3 composite microfibers and were characterized by scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), thermal gravimetric and differential thermal analysis (TG-DTA), and (FTIR). SEM micrographs indicated that the surface of the composite fibers was smooth and became coarse with the increase of calcination temperatures. The diameters of CeO2 hollow nanofibers (300 nm at 600 ℃ and 600 nm at 800 ℃ ) were smaller than those of PVP/Ce(NO3)3 composite fibers (1-2 um ). CeO2 hollow nanofibers were obtained at 600 ℃ and CeO2 hollow and porous nanofibers formed by nanoparti- cles were obtained at 800 ℃. The length of the CeO2 hollow nanofibers was greater than 50 um. XRD analysis revealed that the composite microfibers were amorphous in structure and CeO2 nanofibers were cubic in structure with space group O^5H - FM3m when calcination tem- peratures were 600-800 ℃. TG-DTA and FTIR revealed that the formation of CeO2 nanofibers was largely influenced by the calcination temperatures. Possible formation mechanism of CeO2 hollow nanofibers was proposed.展开更多
Diabetes is one of the most prevalent diseases in the world with high-mortality and complex complications including diabetic foot ulcer(DFU). It has been reported that the difficulties in repairing the wound related t...Diabetes is one of the most prevalent diseases in the world with high-mortality and complex complications including diabetic foot ulcer(DFU). It has been reported that the difficulties in repairing the wound related to DFU has much relationship with the wound infection,change of inflammatory responses, lack of extracellular matrix(ECM), and the failure of angiogenesis. Following the development of medical materials and pharmaceutical technology, nanofibers has been developed by electrospinning with huge porosity, excellent humidity absorption, a better oxygen exchange rate, and some antibacterial activities. That is to say, as a potential material, nanofibers must be a wonderful candidate for the DFU treatment with so many benefits. Careful selection of polymers from natural resource and synthetic resource can widen the nanofibrous application. Popular methods applied for the nanofibrous fabrication consist of uniaxial electrospinning and coaxial electrospinning. Furthermore, nanofibers loading chemical, biochemical active pharmaceutical ingredient(API)or even stem cells can be wonderful dosage forms for the treatment of DFU. This review summarizes the present techniques applied in the fabrication of nanofibrous dressing(ND)that utilizes a variety of materials and active agents to offer a better health care for the patients suffering from DFU.展开更多
One-dimensional nano-structured materials have attracted attention due to its unique properties afforded such as the across-linked structures and large aspect ratios.In this work,one-dimensional CoSe@N-doped carbon na...One-dimensional nano-structured materials have attracted attention due to its unique properties afforded such as the across-linked structures and large aspect ratios.In this work,one-dimensional CoSe@N-doped carbon nanofibers(CoSe@NCNFs)are successfully by combining the techniques of electrospinning and annealing.Selenium powder are directly dispersed in the polyacrylonitrile/N,N-Dimethylformamide(DMF)solution containing cobalt salt to form the product.The performance of these materials was investigated in Li-ion batteries after the annealing at different temperatures.The Co Se@NC nanofibers annealed at 550℃(CoSe@NC-550)and displayed excellent storage properties,affording a high capacity of 796 m Ah·g-1at a current density of 1 A·g^-1 for 100 cycles.Moreover,it is confirmed that the pseudocapacitive contribution of CoSe@NC-550 is up to 72.8%at the scan rate of 1 mV/s through the cyclic voltammetry analysis.展开更多
Microporous carbon nanofibers (MCNFs) derived from polyacrylonitrile nanofibers were fabricated via electrospinning technology and phase separation in the presence of polyvinylpyrrolidone (PVP). PVP together with a mi...Microporous carbon nanofibers (MCNFs) derived from polyacrylonitrile nanofibers were fabricated via electrospinning technology and phase separation in the presence of polyvinylpyrrolidone (PVP). PVP together with a mixed solvent of N, N-Dimethylformamide and dimethyl sulfoxide was used as pore forming agent. The influences of PVP content in casting solution on the structure and electrochemical performance of the MCNFs were also investigated. The highest capacitance of 200 F/g was obtained on a three-electrode system at a scan rate of 0.5 A/g. The good performance was owing to the high specific surface area and the large amount of micro-pores, which enhanced the absorption and the transportation efficiency of electrolyte ion during charge/discharge process. This research indicated that the combination of electrospinning and phase separation technology could be used to fabricate microporous carbon nanofibers as electrode materials for supercapacitors with high specific surface area and outstanding electrochemical performance. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
Developing an e cient and durable oxygen reduction electrocatalyst is critical for clean-energy technology, such as fuel cells and metal–air batteries. In this study, we developed a facile strategy for the preparatio...Developing an e cient and durable oxygen reduction electrocatalyst is critical for clean-energy technology, such as fuel cells and metal–air batteries. In this study, we developed a facile strategy for the preparation of flexible, porous, and well-dispersed metal–heteroatom-doped carbon nanofibers by direct carbonization of electrospun Zn/Co-ZIFs/PAN nanofibers(Zn/Co-ZIFs/PAN). The obtained Zn/Co and N co-doped porous carbon nanofibers carbonized at 800 °C(Zn/Co–N@PCNFs-800) presented a good flexibility, a continuous porous structure, and a superior oxygen reduction reaction(ORR) catalytic activity to that of commercial 20 wt% Pt/C, in terms of its onset potential(0.98 V vs. RHE), half-wave potential(0.89 V vs. RHE), and limiting current density(-5.26 mA cm^(-2)). In addition, we tested the suitability and durability of Zn/Co–N@PCNFs-800 as the oxygen cathode for a rechargeable Zn–air battery. The prepared Zn–air batteries exhibited a higher power density(83.5 mW cm^(-2)), a higher specific capacity(640.3 mAh g^(-1)), an excellent reversibility, and a better cycling life than the commercial 20 wt% Pt/C + RuO_2 catalysts. This design strategy of flexible porous non-precious metal-doped ORR electrocatalysts obtained from electrospun ZIFs/polymer nanofibers could be extended to fabricate other novel, stable, and easy-to-use multi-functional electrocatalysts for clean-energy technology.展开更多
Rhenium diselenide(ReSe2) has caused considerable concerns in the field of energy storage because the compound and its composites still suffer from low specific capacity and inferior cyclic stability.In this study,ReS...Rhenium diselenide(ReSe2) has caused considerable concerns in the field of energy storage because the compound and its composites still suffer from low specific capacity and inferior cyclic stability.In this study,ReSe2 nanoparticles encapsulated in carbon nanofibers were synthesized successfully with simple electrospinning and heat treatment.It was found that graphene modifications could affect considerably the microstructure and electrochemical properties of ReSe2–carbon nanofibers.Accordingly,the modified compound maintained a capacity of 227 mAhg-1 after 500cycles at 200 mAg-1 for Na+storage,230 mAh g-1 after 200 cycles at 200 mAg-1,212 mAh g-1 after 150 cycles at 500 mAg-1 for K+ storage,which corresponded to the capacity retention ratios of 89%,97%,and 86%,respectively.Even in Na+full cells,its capacity was maintained to 82% after 200 cycles at 1 C(117 mAg-1).The superior stability of ReSe2–carbon nanofibers benefitted from the extremely weak van der Waals interactions and large interlayer spacing of ReSe2,in association with the role of graphene-modified carbon nanofibers,in terms of the shortening of electron/ion transport paths and the improvement of structural support.This study may provide a new route for a broadened range of applications of other rhenium-based compounds.展开更多
Elcctrospiiming is a straightforward method to produce micro/nanoscale fibers from polymer solutions typically using an operating voltage of 10 kV 30 kV and spinning distance of 10 cm 20 cm. In this paper, polyvinyl p...Elcctrospiiming is a straightforward method to produce micro/nanoscale fibers from polymer solutions typically using an operating voltage of 10 kV 30 kV and spinning distance of 10 cm 20 cm. In this paper, polyvinyl pyrrolidone (PVP) non-woven nanofibers with diameters of 200 nm 900 nm were prepared by low-voltage near-field electrospinning with a working voltage of less than 2.8 kV and a spinning distance of less than 10 mm. Besides the uniform fibers, beaded-fibers were also fabricated and the formation mechanism was discussed. Particularly, a series of experiments were carried out to explore the influence of processing variables on the formation of near-field electrospun PVP nanofibers, including concentration, humidity, collecting position, and spinning distance.展开更多
ZnO nanofibers with an average diameter of about 90 nm were prepared by an electrospinning method combined with a calcination process. The as-electrospun nanofibers before and after calcination were characterized by m...ZnO nanofibers with an average diameter of about 90 nm were prepared by an electrospinning method combined with a calcination process. The as-electrospun nanofibers before and after calcination were characterized by means of differential thermal analysis(DTA), thermal gravimetric analysis(TGA), X-ray diffraction(XRD) and scanning electron microscopy(SEM). The fibers after calcination at 600 °C belong to the hexagonal wurtzite structure. The sensor based on ZnO nanofibers exhibited excellent ethanol sensing properties at 206 °C such as good linear dependence in the low concentration(1―100 μL/L), high response, and good selectivity. Fast response(less than 2 s) and recovery(about 16 s) were also observed in our investigations.展开更多
The present study involves the fabrication of tungsten trioxide(WO3) nanofibers by an electrospinning technique using polyvinyl pyrrolidone(PVP)/citric acid/tungstic acid as precursor solution. It was found that the P...The present study involves the fabrication of tungsten trioxide(WO3) nanofibers by an electrospinning technique using polyvinyl pyrrolidone(PVP)/citric acid/tungstic acid as precursor solution. It was found that the PVP concentration was one of the most crucial processing parameters determining the final properties of WO3 nanofibers. The optimum concentration of PVP was from 75 to 94 g L-1. The average diameter of the nanofibers increases with increasing the PVP concentration, whereas it is decreased after sintering and orthorhombic structure were formed at 500 °C. The photocatalytic properties of the as-synthesized nanofibers were also investigated by degrading methylene blue and twofold efficiency was obtained compared with that of commercial WO3 microparticles.展开更多
Porous TiO2/ZnO composite nanofibers have been successfully prepared by electrospinning technique for the first time.It was generated by calcining TiO2/ZnCl2/PVP[PVP:polyvinyl pyrrolidone)]nanofibers,which were elec...Porous TiO2/ZnO composite nanofibers have been successfully prepared by electrospinning technique for the first time.It was generated by calcining TiO2/ZnCl2/PVP[PVP:polyvinyl pyrrolidone)]nanofibers,which were electrospun from a mixture solution of TiO2,ZnCl2 and PVP.Transmission electron microscopy(TEM) and X-ray diffraction(XRD) analyses were used to identify the morphology of the TiO2/ZnO nanofibers and a formation of inorganic TiO2/ZnO fibers.The porous structure of the TiO2/ZnO fibers was characterized by N2 adsoption/desorption isotherm.Surface photovoltage spectroscopy(SPS) and photocatalytic activity measurements revealed advance properties of the porous TiO2/ZnO composite nanofibers and the results were compared with pure TiO2 nanofibers,pure ZnO nanofibers and TiO2/ZnO nanoparticles.展开更多
A cheap and simple sample preparation method, consisting of a dispersive solid-phase method and an adsorbent, activated carbon decorated PAN nanofibers, was employed and used for the extraction of antibiotics(ciproflo...A cheap and simple sample preparation method, consisting of a dispersive solid-phase method and an adsorbent, activated carbon decorated PAN nanofibers, was employed and used for the extraction of antibiotics(ciprofloxacin, danofloxacin, and enrofloxacin) in wastewater. Electrospun PAN nanofibers that were decorated with activated carbon produced from waste tires were used as the solid phase and the antibiotics analyzed by using high-performance liquid chromatography. Parameters such as pH, mass of adsorbent(MA),extraction volume(EV), and extraction time(ET) were optimized owing to their potential effect on the extraction of antibiotics from water. The recovery of all antibiotics was satisfactory, in the range of 90%–99%.The limits of detection and quantification were 0.05, 0.11, 0.20, and 0.53, 1.21, 2.17 mg/L, respectively. The precision was determined from the repeatability and reproducibility and expressed as the intra-day(n=20)and inter-day(n=5) precision. The intra-day and inter-day precision was reported in terms of the percentage relative standard deviation, which was 3% and 4%, respectively. The adsorption capacity of the activated carbon-decorated PAN nanofibers was satisfactory, and the reusability of the adsorbent was impressive when reused ten times. The accuracy of the dispersive solid phase extraction(DSPE) was validated by spike recovery tests; the results proved the reliability and efficiency of adsorbing antibiotics from wastewater. Finally, the proposed method was applied to wastewater samples collected from a wastewater treatment plant, which included influent, secondary, and effluent wastewater.展开更多
Carbon-coated LiFePO_4 hollow nanofibers as cathode materials for Li-ion batteries were obtained by coaxial electrospinning. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer...Carbon-coated LiFePO_4 hollow nanofibers as cathode materials for Li-ion batteries were obtained by coaxial electrospinning. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller specific surface area analysis, galvanostatic charge–discharge, and electrochemical impedance spectroscopy(EIS) were employed to investigate the crystalline structure, morphology, and electrochemical performance of the as-prepared hollow nanofibers. The results indicate that the carbon-coated LiFePO_4 hollow nanofibers have good long-term cycling performance and good rate capability: at a current density of 0.2C(1.0C = 170 mA ·g^-1) in the voltage range of 2.5–4.2 V, the cathode materials achieve an initial discharge specific capacity of 153.16 mA h·g^-1 with a first charge–discharge coulombic efficiency of more than 97%, as well as a high capacity retention of 99% after 10 cycles; moreover, the materials can retain a specific capacity of 135.68 mA h·g^-1, even at 2C.展开更多
Electrospinning is a highly versatile technique to prepare continuous fibers with diameters of the order of nanometers. The remarkable high aspect ratio and high porosity bring electrospun nanofibers highly attractive...Electrospinning is a highly versatile technique to prepare continuous fibers with diameters of the order of nanometers. The remarkable high aspect ratio and high porosity bring electrospun nanofibers highly attractive to various nanotechnological applications such as filtration membranes, protective clothing, drug delivery, tissue-engineering, biosensors, catalysis, fuel cells and so on. In this review, we collectively summarized the recent progress in developments of the electrospun ultrafine polyamide-6 based nanofibers preparation,characterization and their applications. Information of this polyamide-6 and composites together with their processing conditions for electrospinning of ultrafine nanofibers has been summarized in this review. The recent developments made during last few years on these materials are addressed in this review. We are anticipating that this review certainly drive the researchers for developing more intensive investigation for exploring in many technological areas.展开更多
The paper was aimed at the PMMA/HNTs composite nanofibers with well enhanced mechanical properties prepared by electrospinning technique for the first time. A series of characterizations were used to illustrate the st...The paper was aimed at the PMMA/HNTs composite nanofibers with well enhanced mechanical properties prepared by electrospinning technique for the first time. A series of characterizations were used to illustrate the structure and properties of the composite nanofibers by SEM, XRD, FTIR and DSC techniques. The effect of the PMMA/HNTs composite nanofibers in relationship to the mass percentage of HNTs was investigated. The results indicated that HNTs wrapped in polymer matrix were highly oriented and dispersed by the electrospinning technique, resulting in improved thermal stability of the polymer. Moreover, the mechanical properties of the PMMA/HNTs composite nanofibers which were dependent on HNTs mass content were measured, and good enhanced mechanical properties were obtained.展开更多
基金supported by the National Natural Science Foundation of China(52122702,52277215)the Natural Science Foundation of Heilongjiang Province of China(JQ2021E005)。
文摘Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs.
基金funded by the Minister of Education,Culture,Research,and Technology of Indonesia through a research scheme of“Penelitian Fundamental–Reguler(PFR)2023”under a contract number of 1115c/IT9.2.1/PT.01.03/2023.
文摘This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueous solutions.The Nb_(2)O_(5) nanorods were vertically grown using a hydrothermal process on a base electrospun nanofibrous membrane made of polyacrylonitrile/polyvinylidene fluoride/ammonium niobate(V)oxalate hydrate(Nb_(2)O_(5)@PAN/PVDF/ANO).They were characterized using field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD)analysis,and Fourier transform infrared(FTIR)spectroscopy.These composite nanofibers possessed a narrow optical bandgap energy of 3.31 eV and demonstrated an MB degradation efficiency of 96%after 480 min contact time.The pseudo-first-order kinetic study was also conducted,in which Nb_(2)O_(5)@PAN/PVDF/ANO nanofibers have kinetic constant values of 1.29×10^(-2) min^(-1) and 0.30×10^(-2) min^(-1) for adsorption and photocatalytic degradation of MB aqueous solutions,respectively.These values are 17.7 and 7.8 times greater than those of PAN/PVDF/ANO nanofibers without Nb_(2)O_(5) nanostructures.Besides their outstanding photocatalytic performance,the developed membrane materials exhibit advantageous characteristics in recycling,which subsequently widen their practical use in environmental remediation applications.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korean Government(MSIT)(2019M3E6A1103944,2020R1A2C2010690).
文摘The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)RRs)in solid oxide elec-trolysis cells(SOECs).However,practical appli-cation of nanofiber-based electrodes faces chal-lenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte.To tackle this challenge,a novel hybrid nanofiber electrode,La_(0.6)Sr_(0.4)Co_(0.15)Fe_(0.8)Pd_(0.05)O_(3-δ)(H-LSCFP),is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique.After consecutive treatment in 100% H_(2) and CO_(2) at 700°C,LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface,enhancing CO_(2) adsorption.The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm^(-2) in CO_(2) at 800°C and 1.5 V,setting a new benchmark among reported nanofiber-based electrodes.Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO_(2)RR.The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure,paving the way for further advancements and nanofiber applications in CO_(2)-SOECs.
基金National Natural Science Foundation of China(Nos.52225204,52173233 and 52202085)Innovation Program of Shanghai Municipal Education Commission,China(No.2021-01-07-00-03-E00109)+3 种基金Natural Science Foundation of Shanghai,China(No.23ZR1479200)“Shuguang Program”Supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission,China(No.20SG33)Fundamental Research Funds for the Central Universities,China(No.2232024Y-01)DHU Distinguished Young Professor Program,China(Nos.LZA2022001 and LZB2023002)。
文摘Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR.
基金Project(2011CB605804)supported by the National Basic Research Program of ChinaProject(51165006)supported by the National Natural Science Foundation of China+1 种基金Project(BY2013015-32)supported by Cooperative Innovation Fund-Prospective Project of Jiangsu Province,ChinaProject(JUSRP1045)supported by the Fundamental Research Funds for the Central Universities,China
文摘Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of the C/C composites was investigated by detailed analyses of destructive process. The results show that there is a sharp increase in the flexural load-displacement curve in the axial direction of the CNF-C/C composites, followed by a serrated yielding phenomenon similar to the plastic materials. The failure mode of the C/C composites modified with in situ grown CNFs is changed from the pull-out of single fiber to the breaking of fiber bundles. The existence of interfacial layer composed by middle-textured pyrocarbon, CNFs and high-textured pyrocarbon can block the crack propagation and change the propagation direction of the main crack, which leads to the higher flexural strength and modulus of C/C composites.
基金This work was supported by the National Natural Science Foundation of China (No.U1432108) and the Fundamental Research Funds for the Central Universities (No.WK2320000034).
文摘SnO2 nanofibers were synthesized by electrospinning and modified with Co3O4 via impregnation in this work. Chemical composition and morphology of the nanofibers were system- atically characterized, and their gas sensing properties were investigated. Results showed that Co3O4 modification significantly enhanced the sensing performance of SnO2 nanofibers to ethanol gas. For a sample with 1.2 mol% Co3O4, the response to 100 ppm ethanol was 38.0 at 300 ℃, about 6.7 times larger than that of SnO2 nanofibers. In addition, the response/recovery time was also greatly reduced. A power-law dependence of the sensor response on the ethanol concentration as well as excellent ethanol selectivity was observed for the Co3O4/SnO2 sensor. The enhanced ethanol sensing performance may be attributed to the formation of p-n heterojunctions between the two oxides.
基金the Science and Technology Development Planning Project of Jilin Province (20040125, 20060504, 20070402)the Scien-tific Research Planning Project of the Education Department of Jilin Province (2005109, 2006YJT05)the Scientific Research Project of En-vironment Protection Bureau of Jilin Province(2006-24)
文摘Electrospinning technique was used to fabricate PVP/Ce(NO3)3 composite microfibers. Different morphological CeO2 nanofibers were obtained by calcination of the PVP/Ce(NO3)3 composite microfibers and were characterized by scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), thermal gravimetric and differential thermal analysis (TG-DTA), and (FTIR). SEM micrographs indicated that the surface of the composite fibers was smooth and became coarse with the increase of calcination temperatures. The diameters of CeO2 hollow nanofibers (300 nm at 600 ℃ and 600 nm at 800 ℃ ) were smaller than those of PVP/Ce(NO3)3 composite fibers (1-2 um ). CeO2 hollow nanofibers were obtained at 600 ℃ and CeO2 hollow and porous nanofibers formed by nanoparti- cles were obtained at 800 ℃. The length of the CeO2 hollow nanofibers was greater than 50 um. XRD analysis revealed that the composite microfibers were amorphous in structure and CeO2 nanofibers were cubic in structure with space group O^5H - FM3m when calcination tem- peratures were 600-800 ℃. TG-DTA and FTIR revealed that the formation of CeO2 nanofibers was largely influenced by the calcination temperatures. Possible formation mechanism of CeO2 hollow nanofibers was proposed.
基金financially supported by the National Natural Science Foundation of China(No.81600353)the Career Development Program for Young Teachers in Shenyang Pharmaceutical University
文摘Diabetes is one of the most prevalent diseases in the world with high-mortality and complex complications including diabetic foot ulcer(DFU). It has been reported that the difficulties in repairing the wound related to DFU has much relationship with the wound infection,change of inflammatory responses, lack of extracellular matrix(ECM), and the failure of angiogenesis. Following the development of medical materials and pharmaceutical technology, nanofibers has been developed by electrospinning with huge porosity, excellent humidity absorption, a better oxygen exchange rate, and some antibacterial activities. That is to say, as a potential material, nanofibers must be a wonderful candidate for the DFU treatment with so many benefits. Careful selection of polymers from natural resource and synthetic resource can widen the nanofibrous application. Popular methods applied for the nanofibrous fabrication consist of uniaxial electrospinning and coaxial electrospinning. Furthermore, nanofibers loading chemical, biochemical active pharmaceutical ingredient(API)or even stem cells can be wonderful dosage forms for the treatment of DFU. This review summarizes the present techniques applied in the fabrication of nanofibrous dressing(ND)that utilizes a variety of materials and active agents to offer a better health care for the patients suffering from DFU.
基金supported by the National Natural Science Foundation of China (Grant No. 51302079)the Natural Science Foundation of Hunan Province (Grant No. 2017JJ1008)
文摘One-dimensional nano-structured materials have attracted attention due to its unique properties afforded such as the across-linked structures and large aspect ratios.In this work,one-dimensional CoSe@N-doped carbon nanofibers(CoSe@NCNFs)are successfully by combining the techniques of electrospinning and annealing.Selenium powder are directly dispersed in the polyacrylonitrile/N,N-Dimethylformamide(DMF)solution containing cobalt salt to form the product.The performance of these materials was investigated in Li-ion batteries after the annealing at different temperatures.The Co Se@NC nanofibers annealed at 550℃(CoSe@NC-550)and displayed excellent storage properties,affording a high capacity of 796 m Ah·g-1at a current density of 1 A·g^-1 for 100 cycles.Moreover,it is confirmed that the pseudocapacitive contribution of CoSe@NC-550 is up to 72.8%at the scan rate of 1 mV/s through the cyclic voltammetry analysis.
基金supported by the National Natural Science Foundation of China(51203071,51363014 and 51362018)China Postdoctoral Science Foundation(2014M552509)+2 种基金the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(sklpme2014-4-25)the Program for Hongliu Distinguished Young Scholars in Lanzhou University of Technology(J201402)the University Scientific Research Project of Gansu Province(2014B-025)
文摘Microporous carbon nanofibers (MCNFs) derived from polyacrylonitrile nanofibers were fabricated via electrospinning technology and phase separation in the presence of polyvinylpyrrolidone (PVP). PVP together with a mixed solvent of N, N-Dimethylformamide and dimethyl sulfoxide was used as pore forming agent. The influences of PVP content in casting solution on the structure and electrochemical performance of the MCNFs were also investigated. The highest capacitance of 200 F/g was obtained on a three-electrode system at a scan rate of 0.5 A/g. The good performance was owing to the high specific surface area and the large amount of micro-pores, which enhanced the absorption and the transportation efficiency of electrolyte ion during charge/discharge process. This research indicated that the combination of electrospinning and phase separation technology could be used to fabricate microporous carbon nanofibers as electrode materials for supercapacitors with high specific surface area and outstanding electrochemical performance. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金the Natural Science Foundation of Jiangsu Province (Grant No. BK20171200) for their financial support
文摘Developing an e cient and durable oxygen reduction electrocatalyst is critical for clean-energy technology, such as fuel cells and metal–air batteries. In this study, we developed a facile strategy for the preparation of flexible, porous, and well-dispersed metal–heteroatom-doped carbon nanofibers by direct carbonization of electrospun Zn/Co-ZIFs/PAN nanofibers(Zn/Co-ZIFs/PAN). The obtained Zn/Co and N co-doped porous carbon nanofibers carbonized at 800 °C(Zn/Co–N@PCNFs-800) presented a good flexibility, a continuous porous structure, and a superior oxygen reduction reaction(ORR) catalytic activity to that of commercial 20 wt% Pt/C, in terms of its onset potential(0.98 V vs. RHE), half-wave potential(0.89 V vs. RHE), and limiting current density(-5.26 mA cm^(-2)). In addition, we tested the suitability and durability of Zn/Co–N@PCNFs-800 as the oxygen cathode for a rechargeable Zn–air battery. The prepared Zn–air batteries exhibited a higher power density(83.5 mW cm^(-2)), a higher specific capacity(640.3 mAh g^(-1)), an excellent reversibility, and a better cycling life than the commercial 20 wt% Pt/C + RuO_2 catalysts. This design strategy of flexible porous non-precious metal-doped ORR electrocatalysts obtained from electrospun ZIFs/polymer nanofibers could be extended to fabricate other novel, stable, and easy-to-use multi-functional electrocatalysts for clean-energy technology.
基金supported by the National Natural Science Foundation of China(Grants51772082,51574117,and 51804106)the Research Projects of Degree and Graduate Education Teaching Reformation in Hunan Province(JG2018B031,JG2018A007)+1 种基金the Natural Science Foundation of Hunan Province(2019JJ30002,2019JJ50061)project funded by the China Postdoctoral Science Foundation(2017M610495,2018T110822)
文摘Rhenium diselenide(ReSe2) has caused considerable concerns in the field of energy storage because the compound and its composites still suffer from low specific capacity and inferior cyclic stability.In this study,ReSe2 nanoparticles encapsulated in carbon nanofibers were synthesized successfully with simple electrospinning and heat treatment.It was found that graphene modifications could affect considerably the microstructure and electrochemical properties of ReSe2–carbon nanofibers.Accordingly,the modified compound maintained a capacity of 227 mAhg-1 after 500cycles at 200 mAg-1 for Na+storage,230 mAh g-1 after 200 cycles at 200 mAg-1,212 mAh g-1 after 150 cycles at 500 mAg-1 for K+ storage,which corresponded to the capacity retention ratios of 89%,97%,and 86%,respectively.Even in Na+full cells,its capacity was maintained to 82% after 200 cycles at 1 C(117 mAg-1).The superior stability of ReSe2–carbon nanofibers benefitted from the extremely weak van der Waals interactions and large interlayer spacing of ReSe2,in association with the role of graphene-modified carbon nanofibers,in terms of the shortening of electron/ion transport paths and the improvement of structural support.This study may provide a new route for a broadened range of applications of other rhenium-based compounds.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11074138, 11004114, and 50973098)the Natural Science Foundation of Shandong Province for Distinguished Young Scholars (Grant No. JQ201103)the National Key Basic Research Development Program of China (Grant No. 2012CB722705)
文摘Elcctrospiiming is a straightforward method to produce micro/nanoscale fibers from polymer solutions typically using an operating voltage of 10 kV 30 kV and spinning distance of 10 cm 20 cm. In this paper, polyvinyl pyrrolidone (PVP) non-woven nanofibers with diameters of 200 nm 900 nm were prepared by low-voltage near-field electrospinning with a working voltage of less than 2.8 kV and a spinning distance of less than 10 mm. Besides the uniform fibers, beaded-fibers were also fabricated and the formation mechanism was discussed. Particularly, a series of experiments were carried out to explore the influence of processing variables on the formation of near-field electrospun PVP nanofibers, including concentration, humidity, collecting position, and spinning distance.
基金Supported by the National High-Tech Research and Development Program of China(No.2009AA03Z402)the National Natural Science Foundation of China(Nos.60977031, 50977038)the Doctoral Fund of Ministry of Education of China(No.20090061110040)
文摘ZnO nanofibers with an average diameter of about 90 nm were prepared by an electrospinning method combined with a calcination process. The as-electrospun nanofibers before and after calcination were characterized by means of differential thermal analysis(DTA), thermal gravimetric analysis(TGA), X-ray diffraction(XRD) and scanning electron microscopy(SEM). The fibers after calcination at 600 °C belong to the hexagonal wurtzite structure. The sensor based on ZnO nanofibers exhibited excellent ethanol sensing properties at 206 °C such as good linear dependence in the low concentration(1―100 μL/L), high response, and good selectivity. Fast response(less than 2 s) and recovery(about 16 s) were also observed in our investigations.
基金supported by the National Research Foundation of Korea(NRF)-Grants funded by the Ministry of ScienceICT and Future Planning(2014R1A2A2A01004352)the Ministry of Education(2009-0093816),Republic of Korea
文摘The present study involves the fabrication of tungsten trioxide(WO3) nanofibers by an electrospinning technique using polyvinyl pyrrolidone(PVP)/citric acid/tungstic acid as precursor solution. It was found that the PVP concentration was one of the most crucial processing parameters determining the final properties of WO3 nanofibers. The optimum concentration of PVP was from 75 to 94 g L-1. The average diameter of the nanofibers increases with increasing the PVP concentration, whereas it is decreased after sintering and orthorhombic structure were formed at 500 °C. The photocatalytic properties of the as-synthesized nanofibers were also investigated by degrading methylene blue and twofold efficiency was obtained compared with that of commercial WO3 microparticles.
基金supported in part by the National Natural Science Foundation of China(Nos.50473008 and 50673034)by Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.09KJD 150001)by DuPont Company through a Young Faculty Grant Award to Prof.C.Wang,and by Headwater Nanokinetix,Inc
文摘Porous TiO2/ZnO composite nanofibers have been successfully prepared by electrospinning technique for the first time.It was generated by calcining TiO2/ZnCl2/PVP[PVP:polyvinyl pyrrolidone)]nanofibers,which were electrospun from a mixture solution of TiO2,ZnCl2 and PVP.Transmission electron microscopy(TEM) and X-ray diffraction(XRD) analyses were used to identify the morphology of the TiO2/ZnO nanofibers and a formation of inorganic TiO2/ZnO fibers.The porous structure of the TiO2/ZnO fibers was characterized by N2 adsoption/desorption isotherm.Surface photovoltage spectroscopy(SPS) and photocatalytic activity measurements revealed advance properties of the porous TiO2/ZnO composite nanofibers and the results were compared with pure TiO2 nanofibers,pure ZnO nanofibers and TiO2/ZnO nanoparticles.
基金National Research Foundation (NRF, grant no. SFH14073184214) for providing financial support
文摘A cheap and simple sample preparation method, consisting of a dispersive solid-phase method and an adsorbent, activated carbon decorated PAN nanofibers, was employed and used for the extraction of antibiotics(ciprofloxacin, danofloxacin, and enrofloxacin) in wastewater. Electrospun PAN nanofibers that were decorated with activated carbon produced from waste tires were used as the solid phase and the antibiotics analyzed by using high-performance liquid chromatography. Parameters such as pH, mass of adsorbent(MA),extraction volume(EV), and extraction time(ET) were optimized owing to their potential effect on the extraction of antibiotics from water. The recovery of all antibiotics was satisfactory, in the range of 90%–99%.The limits of detection and quantification were 0.05, 0.11, 0.20, and 0.53, 1.21, 2.17 mg/L, respectively. The precision was determined from the repeatability and reproducibility and expressed as the intra-day(n=20)and inter-day(n=5) precision. The intra-day and inter-day precision was reported in terms of the percentage relative standard deviation, which was 3% and 4%, respectively. The adsorption capacity of the activated carbon-decorated PAN nanofibers was satisfactory, and the reusability of the adsorbent was impressive when reused ten times. The accuracy of the dispersive solid phase extraction(DSPE) was validated by spike recovery tests; the results proved the reliability and efficiency of adsorbing antibiotics from wastewater. Finally, the proposed method was applied to wastewater samples collected from a wastewater treatment plant, which included influent, secondary, and effluent wastewater.
基金financially supported by the Natural Science Foundation of China (No. 21076028)the National Undergraduate Training Programs for Innovation and Entrepreneurship (No. 201410150016)
文摘Carbon-coated LiFePO_4 hollow nanofibers as cathode materials for Li-ion batteries were obtained by coaxial electrospinning. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller specific surface area analysis, galvanostatic charge–discharge, and electrochemical impedance spectroscopy(EIS) were employed to investigate the crystalline structure, morphology, and electrochemical performance of the as-prepared hollow nanofibers. The results indicate that the carbon-coated LiFePO_4 hollow nanofibers have good long-term cycling performance and good rate capability: at a current density of 0.2C(1.0C = 170 mA ·g^-1) in the voltage range of 2.5–4.2 V, the cathode materials achieve an initial discharge specific capacity of 153.16 mA h·g^-1 with a first charge–discharge coulombic efficiency of more than 97%, as well as a high capacity retention of 99% after 10 cycles; moreover, the materials can retain a specific capacity of 135.68 mA h·g^-1, even at 2C.
基金financially supported by the Ministry of Education, Science Technology (MEST) and National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovation(2012H1B8A2025931)supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST)(No.2012R1A2A2A01046086)
文摘Electrospinning is a highly versatile technique to prepare continuous fibers with diameters of the order of nanometers. The remarkable high aspect ratio and high porosity bring electrospun nanofibers highly attractive to various nanotechnological applications such as filtration membranes, protective clothing, drug delivery, tissue-engineering, biosensors, catalysis, fuel cells and so on. In this review, we collectively summarized the recent progress in developments of the electrospun ultrafine polyamide-6 based nanofibers preparation,characterization and their applications. Information of this polyamide-6 and composites together with their processing conditions for electrospinning of ultrafine nanofibers has been summarized in this review. The recent developments made during last few years on these materials are addressed in this review. We are anticipating that this review certainly drive the researchers for developing more intensive investigation for exploring in many technological areas.
基金supported by the Talent Introduction Fund of Yangzhou University(2012)the Key Research Project-Industry Foresight and General Key Technology of Yangzhou(YZ2015020)+3 种基金the Innovative Talent for the Green Yangzhou Golden Phoenix Program(yzlyjfjh2015CX073)the Jiangsu Province Science and Technology Support Project(BE2014613)the Six Talent Peaks of Jiangsu Province(2014-XCL-013)the Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The paper was aimed at the PMMA/HNTs composite nanofibers with well enhanced mechanical properties prepared by electrospinning technique for the first time. A series of characterizations were used to illustrate the structure and properties of the composite nanofibers by SEM, XRD, FTIR and DSC techniques. The effect of the PMMA/HNTs composite nanofibers in relationship to the mass percentage of HNTs was investigated. The results indicated that HNTs wrapped in polymer matrix were highly oriented and dispersed by the electrospinning technique, resulting in improved thermal stability of the polymer. Moreover, the mechanical properties of the PMMA/HNTs composite nanofibers which were dependent on HNTs mass content were measured, and good enhanced mechanical properties were obtained.