期刊文献+
共找到33,148篇文章
< 1 2 250 >
每页显示 20 50 100
Interfacial reinforcement of core-shell HMX@energetic polymer composites featuring enhanced thermal and safety performance
1
作者 Binghui Duan Hongchang Mo +3 位作者 Bojun Tan Xianming Lu Bozhou Wang Ning Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期387-399,共13页
The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves... The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns. 展开更多
关键词 HMX crystals Polyalcohol bonding agent Energetic polymer core-shell structure Interfacial reinforcement
下载PDF
PREPARATION OF ACRYLIC SUPERABSORBENTS WITH CORE-SHELL STRUCTURE BY MODIFIED INVERSE SUSPENSION POLYMERIZATION 被引量:10
2
作者 崔英德 郭建维 +1 位作者 廖列文 尹国强 《化工学报》 EI CAS CSCD 北大核心 2000年第6期723-724,共2页
关键词 SUPERABSORBENTS core-shell structure inverse suspension
下载PDF
Preparation of Self-crosslinked Fluorocarbon Polymer Emulsion with Core-shell Structure by the Method of Soap-free Emulsion Polymerization 被引量:1
3
作者 陈立军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第4期631-636,共6页
Using methyl methacrylate (MMA), butyl acrylate(BA) and hexafluorobutyl acrylate(HFBA) as main raw materials, we prepared self-crosslinked fluorocarbon polymer emulsion with core-shell structure via soap-free em... Using methyl methacrylate (MMA), butyl acrylate(BA) and hexafluorobutyl acrylate(HFBA) as main raw materials, we prepared self-crosslinked fluorocarbon polymer emulsion with core-shell structure via soap-free emulsion polymerization when the conception of particle design and polymer morphology was adopted. Moreover, the influence of mole ratio of BA to MAA, pH value on the oligomer was studied. And the effects of the added amount of oligomer, self-crosslinked monomer and HFBA, mass ratio of BA to MMA, reaction temperature and the initiator on the polymerization technology and the performance of the product, were investigated and optimized. The structure and performance of the fluorocarbon polymer emulsion were characterized and tested with FTIR, TEM, MFT and contact angle and water absorption of the latex film. The experimental results show that the optimal conditions for preparing fluorocarbon polymer emulsion are as follows: for preparing the oligomer, tool ratio of BA to MAA is equal to 1.0 : 1.60, and pH value is controlled within the range of 8.0 and 9.0; for preparing fluorocarbon polymer emulsion, the added amount of oligmer[P(BA/MANa)] is 6%; mass ratio of BA to MMA is 40 " 60; the added amount of self-crosslinked monomer is 2%, the added amount of HFBA is 15 %; reaction temperature is 80 ℃; the mixture of potassium persulfate and sodium bisulfite is used as the initiator. The film-forming stability of the fluorocarbon polymer emul- sion and the performance of the latex film, which is prepared with the soap-free emulsion polymerization, are better than that prepared with the conventional emulsion polymerization. 展开更多
关键词 soap-free emulsion polymerization core-shell structure self-crosslinkage fluorocarbon polymer emulsion
下载PDF
NARROW-DISPERSED CROSSLINKED CORE-SHELL POLYMER MICROSPHERES PREPARED BY SURFACE-INITIATED ATOM TRANSFER RADICAL POLYMERIZATION
4
作者 Yu-zengZhao Xin-linYang FengBai 黄文强 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2005年第3期293-299,共7页
Grafting of polystyrene with narrowly dispersed polymer microspheres through surface-initiated atom transferradical polymerization(ATRP)was investigated.Polydivinylbenzene(PDVB)microspheres were prepared by dispersion... Grafting of polystyrene with narrowly dispersed polymer microspheres through surface-initiated atom transferradical polymerization(ATRP)was investigated.Polydivinylbenzene(PDVB)microspheres were prepared by dispersionpolymerization with poly(N-vinyl pyrrolidone)(PVP)as stabilizer.The surfaces of PDVB microspheres werechloromethylated by chloromethyl methyl ether in the presence of zinc chloride as catalyst to form chloromethylbenzeneinitiating core sites for subsequent ATRP grafting of styrene using CuCl/bpy as catalytic system.Polystyrene was found to begrafted not only from the particle surfaces but also from within a thin shell layer,resulting in the formation of particles sizeincreased from 2.38-2.58 μm,which can further grow to 2.93 μm during secondary grafting polymerization of styrene.Thisdemonstrates that grafting polymerization proceeds through a typical ATRP procedure with living nature.All of the preparedmicrospheres have narrow particle size distribution with coefficient of variation around 10%. 展开更多
关键词 Atom transfer radical polymerization(ATRP) core-shell polymers Grafting polymerization Surface-initiated polymerization.
下载PDF
MICRON CORE-SHELL PARTICLES PREPARED BY GRAFTING POLYMERIZATION OF METHYL METHACRYLATE FROM NARROW DISPERSE SURFACE OF CHLOROMETHYLATED POLYDIVINYLBENZENE VIA ATRP
5
作者 Yu-zengZhao Xin-linYang 黄文强 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2005年第3期235-242,共8页
Grafting of poly(methyl methacrylate)from narrow disperse polymer particles by surface-initiated atom transferradical polymerization(ATRP)was investigated.Polydivinylbenzene(PDVB)particles were prepared by dispersionp... Grafting of poly(methyl methacrylate)from narrow disperse polymer particles by surface-initiated atom transferradical polymerization(ATRP)was investigated.Polydivinylbenzene(PDVB)particles were prepared by dispersionpolymerization with poly(N-vinyl pyrrolidone)(PVP)as the stabilizer.Chloromethylated PDVB was used as initiating coresites for subsequent ATRP of methyl methacrylate with CuBr/bpy as catalyst system.It was found that poly(methylmethacrylate)was grafted not only from the particle surfaces but also from within a thin shell layer,leading to particles sizeincreases from 2.38-3.00 μm with a core-shell structure particles.The grafted core-shell particles were characterized withFTIR,SEM,DSC. 展开更多
关键词 core-shell microspheres Atom transfer radical polymerization(ATRP) Graft polymerization.
下载PDF
Synthesis and Characterization of Poly (Methyl Methacrylate)/Polyethylenimine Grafting Core-Shell Nanoparticles for CO2 Adsorption Using Soap-Free Emulsion Copolymerization 被引量:1
6
作者 Jun-Won Kook Ji Young Lee +3 位作者 Ki Seob Hwang In Park Jung Hyun Kim Jun-Young Lee 《Advances in Materials Physics and Chemistry》 2016年第7期220-229,共10页
Unlike previous emulsion polymerization, we used grafting reactions in soap-free emulsion systems. In this study, we synthesized grafted PMMA/PEI core-shell nanoparticles by varying the MMA/PEI content and molecular w... Unlike previous emulsion polymerization, we used grafting reactions in soap-free emulsion systems. In this study, we synthesized grafted PMMA/PEI core-shell nanoparticles by varying the MMA/PEI content and molecular weight of PEI (M<sub>n</sub> = 600, 8000, and 10,000). The size and morphology of the core-shell nanoparticles were characterized by a particle size analyzer and scanning electron microscopy. The nanoparticles were 178 - 408 nm in diameter and swelled in water or methanol by 30 - 75 nm. The size of the nanoparticles increased with MMA contents, whereas the size distribution progressively became homogeneous with increasing molecular weight of PEI. Lastly, we measured CO<sub>2</sub> adsorption capacity of the grafted PMMA/PEI core-shell nanoparticles, and we found the capacity to be limited at a level of 0.69 mg, which occurred for nanoparticles prepared from emulsions at a pH value of 11. 展开更多
关键词 POLYETHYLENIMINE core-shell Nanoparticle CO2 Adsorption Grafting Reaction Soap-Free Emulsion
下载PDF
Study on Dispersion Polymerization Process of Silica Aerogel/Polystyrene Core-Shell Composite Particles
7
作者 Gangqiang Geng Suqing Wen Huan Wang 《材料科学研究(中英文版)》 2013年第2期16-22,共7页
关键词 二氧化硅气凝胶 聚合工艺 复合颗粒 聚苯乙烯 核壳 分散 扫描电子显微镜 苯乙烯单体
下载PDF
Synthesis of Core-shell ZSM-5@ Ordered Mesoporous Silica by Tetradecylamine Surfactant
8
作者 马扩彦 ZHAO Pengxian +4 位作者 YI Hongyu 俞海军 ZHOU Moxi ZHANG Lingling LIU Yupu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期332-336,共5页
A core-shell composite consisting of ZSM-5 zeolite as the core and ordered mesoporous silica as the shell was prepared by a surfactant-controlled sol-gel process and using tetradecylamine(TDA) as the template and Tetr... A core-shell composite consisting of ZSM-5 zeolite as the core and ordered mesoporous silica as the shell was prepared by a surfactant-controlled sol-gel process and using tetradecylamine(TDA) as the template and Tetraethylorthosilicate(TEOS) as the silica precursor.The pores of the silica shell were found to be ordered and perpendicular to the crystal faces of the zeolite core.The thickness of the shell in the coreshell structured composite can be adjusted in the range of 20-90 nm,while the surface morphology and the pore size distribution were modified by changing the mass ratio of TEOS to zeolite.The composite molecular sieves have higher surface area for capturing molecules than ZSM-5,and with the increase of mesoporous shell layer,the ZSM-5@SiO_(2)-x composites show stronger adsorption capacity of butyraldehyde.However,when the shell thickness exceeds 90 nm,the adsorption capacity of butyraldehyde decreases instead.The composites have a huge potential for environmental applications. 展开更多
关键词 core-shell COMPOSITE tetradecylamine SURFACTANT ADSORPTION
下载PDF
Carbon nanotube-hyperbranched polymer core-shell nanowires with highly accessible redox-active sites for fast-charge organic lithium batteries 被引量:1
9
作者 Zhonghui Sun Meng Shu +4 位作者 Jiabin Li Bing Liu Hongyan Yao Shaowei Guan Zhenhua Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期30-36,I0002,共8页
Organic electrode materials are promising for lithium-ion batteries(LIBs) because of their environmental friendliness and structural diversity.However,they always suffer from limited capacity,poor cycling stability,an... Organic electrode materials are promising for lithium-ion batteries(LIBs) because of their environmental friendliness and structural diversity.However,they always suffer from limited capacity,poor cycling stability,and rate performance.Herein,hexaazatrinaphthalene-based azo-linked hyperbranched polymer(HAHP) is designed and synthesized as a cathode for LIBs.However,the densely stacked morphology lowers the chance of the active sites participating in the redox reaction.To address this issue,the singlewalled carbon nanotube(SWCNT) template is used to induce the growth of nanosized HAHP on the surface of SWCNTs.The HAHP@SWCNT nanocomposites have porous structures and highly accessible active sites.Moreover,the strong π-π interaction between HAHP and highly conductive SWCNTs effectively endows the HAHP@SWCNT nanocomposites with improved cycling stability and fast charge-discharge rates.As a result,the HAHP@SWCNT nanocomposite cathode shows a high specific capacity(320.4 mA h g^(-1)at 100 mA g^(-1)),excellent cycling stability(800 cycles;290 mA h g^(-1)at 100 mA g^(-1),capacity retained 91%) and outstanding rate performance(235 mA h g^(-1)at 2000 mA g^(-1),76% capacity retention versus 50 mA g^(-1)).This work provides a strategy to combine the macromolecular structural design and micromorphology control of electrode materials for obtaining organic polymer cathodes for high-performance LIBs. 展开更多
关键词 Organic electrode Organic lithium batteries core-shell nanowire Hexaazatrinaphthylene polymer electrode materials
下载PDF
Core-Shell Semiconductor-Graphene Nanoarchitectures for Efficient Photocatalysis:State of the Art and Perspectives
10
作者 Jinshen Lan Shanzhi Qu +6 位作者 Xiaofang Ye Yifan Zheng Mengwei Ma Shengshi Guo Shengli Huang Shuping Li Junyong Kang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期553-588,共36页
Semiconductor photocatalysis holds great promise for renewable energy generation and environment remediation,but generally suffers from the serious drawbacks on light absorption,charge generation and transport,and str... Semiconductor photocatalysis holds great promise for renewable energy generation and environment remediation,but generally suffers from the serious drawbacks on light absorption,charge generation and transport,and structural stability that limit the performance.The core-shell semiconductorgraphene(CSSG)nanoarchitectures may address these issues due to their unique structures with exceptional physical and chemical properties.This review explores recent advances of the CSSG nanoarchitectures in the photocatalytic performance.It starts with the classification of the CSSG nanoarchitectures by the dimensionality.Then,the construction methods under internal and external driving forces were introduced and compared with each other.Afterward,the physicochemical properties and photocatalytic applications of these nanoarchitectures were discussed,with a focus on their role in photocatalysis.It ends with a summary and some perspectives on future development of the CSSG nanoarchitectures toward highly efficient photocatalysts with extensive application.By harnessing the synergistic capabilities of the CSSG architectures,we aim to address pressing environmental and energy challenges and drive scientific progress in these fields. 展开更多
关键词 core-shell semiconductor-graphene Nanoarchitecture PHOTOCATALYSIS Driving force Interface
下载PDF
Recent advances in core-shell organic framework-based photocatalysts for energy conversion and environmental remediation
11
作者 Qibing Dong Ximing Li +9 位作者 Yanyan Duan Qingyun Tian Xinxin Liang Yiyin Zhu Lin Tian Junjun Wang Atif Sial Yongqian Cui Ke Zhao Chuanyi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期168-199,I0004,共33页
Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materi... Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation. 展开更多
关键词 Organic framework core-shell structure PHOTOCATALYSIS Energy conversion Environmental remediation
下载PDF
Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite-Free Solid-State Lithium Metal Battery
12
作者 Xue Ye Jianneng Liang +6 位作者 Baorong Du Yongliang Li Xiangzhong Ren Dazhuan Wu Xiaoping Ouyang Qianling Zhang Jianhong Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期50-59,共10页
This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiat... This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism.LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte.Normally,lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer,a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization.However,the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant.The as-prepared poly-methyl methacrylate-based polymer electrolyte has a high ionic conductivity(1.19×10^(−3)S cm^(−1)),a wide electrochemical stability window(5 V vs Li^(+)/Li),and a high Li ion transference number(t_(Li^(+)))of 0.74 at room temperature(RT).Moreover,this polymerization-derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode,which enabled the Li symmetric cell to achieve a long-term cycling performance at 0.2 mAh cm^(−2)for 2800 h.The LiFePO_(4)battery with polymerization-derived polymer electrolyte-modified Li metal anode shows a capacity retention of 91.17%after 800 cycles at 0.5 C.This work provides a facile and accessible approach to manufacturing poly-methyl methacrylate-based polymerization-derived polymer electrolyte and shows great potential as an interphase in Li metal batteries. 展开更多
关键词 in situ polymerization lithium anode polymer electrolyte solid-state lithium batteries
下载PDF
Amorphous core-shell NiMoP@CuNWs rod-like structure with hydrophilicity feature for efficient hydrogen production in neutral media
13
作者 Jiayong Xiao Chao Jiang +3 位作者 Hui Zhang Zhuo Xing Ming Qiu Ying Yu 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期154-163,共10页
Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst onl... Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst only requires an overpotential of 35 mV to reach a current density of 10 mA cm^(-2).The exceptional hydrogen evolution reaction(HER)activity is attributed to the unique amorphous rod-like nature of NiMoP@CuNWs,which possesses a special hydrophilic feature,en-hances mass transfer,promotes effective contact between the electrode and electrolyte solution,and exposes more active sites during the catalytic process.Density functional theory revealed that the introduction of Mo weakens the binding strength of the Ni site on the catalyst surface with the H atom and promotes the desorption process of the H_(2) product significantly.Owing to its facile syn-thesis,low cost,and high catalytic performance,this electrocatalyst is a promising option for com-mercial applications as a water electrolysis catalyst. 展开更多
关键词 AMORPHOUS Three-dimensional core-shell Electrodeposition Neutral electrolyte ELECTROCATALYST Hydrogen evolution reaction
下载PDF
A novel Ag/ZnO core-shell structure for efficient sterilization synergizing antibiotics and subsequently removing residuals
14
作者 Wenmei Han Wenli Wang +4 位作者 Jie Fan Runping Jia Xuchun Yang Tong Wu Qingsheng Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期366-377,共12页
The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by ... The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance. 展开更多
关键词 Ag/ZnO hollow core-shell structures ANTIBIOTICS GENTAMYCIN Synergistic sterilization PHOTODEGRADATION
下载PDF
Exploring the Core-shell Structure of BaTiO3-based Dielectric Ceramics Using Machine Learning Models and Interpretability Analysis
15
作者 孙家乐 XIONG Peifeng +1 位作者 郝华 LIU Hanxing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期561-569,共9页
A machine learning(ML)-based random forest(RF)classification model algorithm was employed to investigate the main factors affecting the formation of the core-shell structure of BaTiO_(3)-based ceramics and their inter... A machine learning(ML)-based random forest(RF)classification model algorithm was employed to investigate the main factors affecting the formation of the core-shell structure of BaTiO_(3)-based ceramics and their interpretability was analyzed by using Shapley additive explanations(SHAP).An F1-score changed from 0.8795 to 0.9310,accuracy from 0.8450 to 0.9070,precision from 0.8714 to 0.9000,recall from 0.8929 to 0.9643,and ROC/AUC value of 0.97±0.03 was achieved by the RF classification with the optimal set of features containing only 5 features,demonstrating the high accuracy of our model and its high robustness.During the interpretability analysis of the model,it was found that the electronegativity,melting point,and sintering temperature of the dopant contribute highly to the formation of the core-shell structure,and based on these characteristics,specific ranges were delineated and twelve elements were finally obtained that met all the requirements,namely Si,Sc,Mn,Fe,Co,Ni,Pd,Er,Tm,Lu,Pa,and Cm.In the process of exploring the structure of the core-shell,the doping elements can be effectively localized to be selected by choosing the range of features. 展开更多
关键词 machine learning BaTiO_(3) core-shell structure random forest classifier
下载PDF
Core-shell mesoporous carbon hollow spheres as Se hosts for advanced Al-Se batteries
16
作者 Haiping Lei Tianwei Wei +1 位作者 Jiguo Tu Shuqiang Jiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期899-906,共8页
Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challen... Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products.In this work,we aim to harness the advantages of Se while reducing its limitations by preparing a core-shell mesoporous carbon hollow sphere with a titanium nitride(C@TiN)host to load 63.9wt%Se as the positive electrode material for Al-Se batteries.Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN,the obtained core-shell mesoporous carbon hollow spheres coated with Se(Se@C@TiN)display superior utilization of the active material and remarkable cycling stability.As a result,Al-Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g^(-1)at a current density of 1000 mA·g^(-1)while maintaining a discharge specific capacity of 86.0 mAh·g^(-1)over 200 cycles.This improved cycling performance is ascribed to the high electrical conductivity of the core-shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN. 展开更多
关键词 aluminum-selenium batteries intermediate products core-shell mesoporous carbon hollow sphere cycling performance
下载PDF
Efficient in-situ end-functionalization of polydienes by isothiocyanate via neodymium mediated coordinative chain transfer polymerization system
17
作者 ZHANG Xiu-hui DONG Jing +2 位作者 WANG Feng LIU Heng ZHANG Xue-quan 《合成橡胶工业》 CAS 2024年第4期347-347,共1页
End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerizatio... End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerization systems,it is highly challenging to achieve such end-functionalizations,because most of polydienyl chains are capped withη3-allyl-Nd moiety during the end of polymerization,which shows very poor reactivity with nucleophile compounds.We launched a new diene polymerization strategy calling coordinative chain transfer polymerization(CCTP)[1].In such a system,all the polydienyl chains are capped withη1-allyl-Al moieties,which reveal greater reactivity with cyclic esters and epoxide compounds,providing an effective manner to prepare polydiene-polyester amphiphilic block copolymers.Inspired by such findings,we now show herein how such types of chain-ends react with isot-hiocyanate to demonstrate an efficient in-situ manner to access end-functionalized polydienes by using CCTP. 展开更多
关键词 properties. polymerization NEODYMIUM
下载PDF
Influence of external nitrogen-containing donors on polymerization behavior of neodymium-based cis-1,4-polybutadiene rubber
18
作者 LI Xin DONG Jing +3 位作者 HAN Zhuo-ling WANG Feng ZHANG Xue-quan LIU Heng 《合成橡胶工业》 CAS 2024年第5期438-438,共1页
Neodymium(Nd)-based catalyst in butadiene(Bd)polymerization has drawn interests due to its availability in affording higher cis-1,4-unit selectivity than transition metal(Ti,Co,Ni,etc.)-based catalysts[1-2].Such outst... Neodymium(Nd)-based catalyst in butadiene(Bd)polymerization has drawn interests due to its availability in affording higher cis-1,4-unit selectivity than transition metal(Ti,Co,Ni,etc.)-based catalysts[1-2].Such outstanding high cis-1,4-unit selecti-vity is hypothetically originated from the presence of 4 f orbitals,that can participate in monomer coordination and thereby govern subsequent enchainment manners.This unique characteristic also renders the active species highly susceptible to Lewis bases,and may impact the overall selectivity as well as polyme-rization behavior after coordination.Nevertheless,it is still a virgin area in such a field,and the influence of Lewis bases on Nd-based diene polymerizations is still a black box.Based on this consideration,how nitrogen-containing donors(D)impacts the overall behaviors of Nd-mediated Bd polymerizations is disclosed. 展开更多
关键词 polymerization BASES SELECTIVITY
下载PDF
Fe-N_(x) sites coupled with core-shell FeS@C nanoparticles to boost the oxygen catalysis for rechargeable Zn-air batteries
19
作者 Katam Srinivas Zhuo Chen +3 位作者 Anran Chen Fei Ma Ming-qiang Zhu Yuanfu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期565-577,I0013,共14页
The development of efficient single-atom catalysts(SACs) for the oxygen reduction reaction(ORR)remains a formidable challenge,primarily due to the symmetric charge distribution of metal singleatom sites(M-N_(4)).To ad... The development of efficient single-atom catalysts(SACs) for the oxygen reduction reaction(ORR)remains a formidable challenge,primarily due to the symmetric charge distribution of metal singleatom sites(M-N_(4)).To address such issue,herein,Fe-N_(x) sites coupled synergistic catalysts fabrication strategy is presented to break the uniform electronic distribution,thus enhancing the intrinsic catalytic activity.Precisely,atomically dispersed Fe-N_(x) sites supported on N/S-doped mesoporous carbon(NSC)coupled with FeS@C core-shell nanoparticles(FAS-NSC@950) is synthesized by a facile hydrothermal reaction and subsequent pyrolysis.Due to the presence of an in situ-grown conductive graphitic layer(shell),the FeS nanoparticles(core) effectively adjust the electronic structure of single-atom Fe sites and facilitate the ORR kinetics via short/long-range coupling interactions.Consequently,FAS-NSC@950displays a more positive half-wave potential(E_(1/2)) of 0.871 V with a significantly boosted ORR kinetics(Tafel slope=52.2 mV dec^(-1)),outpacing the commercial Pt/C(E_(1/2)=0.84 V and Tafel slope=54.6 mV dec^(-1)).As a bifunctional electrocatalyst,it displays a smaller bifunctional activity parameter(ΔE) of 0.673 V,surpassing the Pt/C-RuO_(2) combination(ΔE=0.724 V).Besides,the FAS-NSC@950-based zincair battery(ZAB) displays superior power density,specific capacity,and long-term cycling performance to the Pt/C-Ir/C-based ZAB.This work significantly contributes to the field by offering a promising strategy to enhance the catalytic activity of SACs for ORR,with potential implications for energy conversion and storage technologies. 展开更多
关键词 Fe-N_(x)sites core-shell FeS@C Synergistic interactions Oxygen reduction reaction Zn-air battery
下载PDF
Synergistic Tuning of Nickel Cobalt Selenide@Nickel Telluride Core-Shell Heteroarchitectures for Boosting Overall Urea Electrooxidation and Electrochemical Supercapattery
20
作者 Diab Khalafallah Weibo Huang +1 位作者 Mingjia Zhi Zhanglian Hong 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期301-312,共12页
Herein,we demonstrate the synthesis of bifunctional nickel cobalt selenide@nickel telluride(Ni_(x)Co_(12-x)Se@NiTe)core-shell heterostructures via an electrodeposition approach for overall urea electrolysis and superc... Herein,we demonstrate the synthesis of bifunctional nickel cobalt selenide@nickel telluride(Ni_(x)Co_(12-x)Se@NiTe)core-shell heterostructures via an electrodeposition approach for overall urea electrolysis and supercapacitors.The 3D vertically orientated NiTe dendritic frameworks induce the homogeneous nucleation of 2D Ni_(x)Co_(12-x)Se nanosheet arrays along similar crystal directions and bring a strong interfacial binding between the integrated active components.In particular,the optimized Ni_(6)Co_(6)Se@NiTe with an interface coupling effect works in concert to tune the intrinsic activity.It only needs a low overpotential of 1.33 V to yield a current density of 10 mA cm^(-2)for alkaline urea electrolysis.Meanwhile,the full urea catalysis driven only by Ni_(6)Co_(6)Se@NiTe achieves 10 mA cm^(-2)at a potential of 1.38 V and can approach a constant level of the current response for 40 h.Besides,the integrated Ni_(6)Co_(6)Se@NiTe electrode delivers an enhanced specific capacity(223 mA h g^(-1)at 1 A g^(-1))with a high cycling stability.Consequently,a hybrid asymmetric supercapacitor(HASC)device based on Ni_(6)Co_(6)Se@NiTe exhibits a favorable rate capability and reaches a high energy density of 67.7 Wh kg^(-1)and a power density of 724.8 W kg^(-1)with an exceptional capacity retention of 92.4%after sequential 12000 cycles at 5 A g^(-1). 展开更多
关键词 bifunctional Ni_(x)Co_(12-x)Se@NiTe core-shell electrodeposition heterointerfaces supercapacitors UOR
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部