A one-step ultrasonic mechanical method was used to synthesize a kind of atmospheric water harvesting material with high water harvesting performance in a wide relative humidity(RH)range,especially at low RH(RH<40%...A one-step ultrasonic mechanical method was used to synthesize a kind of atmospheric water harvesting material with high water harvesting performance in a wide relative humidity(RH)range,especially at low RH(RH<40%),namely,mesoporous silica capsule(MSC)with core-shell structure.Transmission electron microscopy(TEM),nitrogen adsorption and other characterization techniques were used to study the formation process of nano-microspheres.A new mechanism of self-adaptive concentration gradient regulation of silicon migration and recombination core-shell structure was proposed to explain the formation of a cavity in the MSC system.The core-shell design can enhance the specific surface area and pore volume while maintaining the monodispersity and mesoporous size.To study the water harvesting performance of MSC,solid silica nanoparticles(SSN)and mesoporous silica nanoparticles(MSN)were prepared.In a small atmospheric water collection test(25℃,40%RH),the water vapour adsorption and desorption kinetics of MSC,SSN,MSN and a commercial silica gel(CSG)were compared and analyzed.The results show that the MSC with mesoporous channels and core-shell structure can provide about 0.324 gwater/gadsorbent,79%higher than the CSG(0.181 gwater/gadsorbent).It is 25.1%higher than that of 0.259 gwater/gadsorbentof un-hollowed MSN and 980%higher than that of0.03 gwater/gadsorbentof un-hollowed SSN.The material has a large specific surface area and pore volume,simple preparation method and low cost,which provides a feasible idea for realising atmospheric water collection in arid and semi-arid regions.展开更多
Adoption of a low water/powder (W/P) ratio is the key to improve the strength and durability of concrete, which relies on a high packing density because fresh concrete requires excess water to offer flowability. To ob...Adoption of a low water/powder (W/P) ratio is the key to improve the strength and durability of concrete, which relies on a high packing density because fresh concrete requires excess water to offer flowability. To obtain a high packing density, powders with different particle sizes, including limestone fines (LSF), superfine cement (SFC), condensed silica fume (CSF), were added to the cement paste and the resulting packing densities were measured directly by a newly-developed wet packing test. Results demonstrated that addition of powders with a finer size would more significantly improve the packing density but the powders should be at least as fine as 1/4 of the OPC to effectively improve the packing density. Packing density and voids ratio relationship showed that a small increase in packing density can significantly decrease the voids ratio, which could allow the W/P ratio to be reduced to improve the strength and durability of the concrete without compromising the flowability.展开更多
Silica sol prepared by sol-gel method was introduced into poly (butyl acrylate) (PBA)/poly (butyl acrylate-styrene-methacryloxypropyl trimethoxysilane) (PSBM) core-shell emulsions to prepare a series of paper surface ...Silica sol prepared by sol-gel method was introduced into poly (butyl acrylate) (PBA)/poly (butyl acrylate-styrene-methacryloxypropyl trimethoxysilane) (PSBM) core-shell emulsions to prepare a series of paper surface sizing agents. The rheological measurement indicated that PSBM emulsions exhibited shear-thinning behavior, and the phenomena became more pronounced with increasing silica sol concentration. Dynamic mechanical analysis (DMA) demonstrated that the stronger interfacial interaction between silica sol and polymer matrix, but microphase separation took place with excess silica sol. Thereby the tensile strength and thermal stability of emulsion films were increased with desirable silica sol concentration, and when silica sol concentration was greater than 6 wt%, the tensile strength leveled off and the decomposition temperature decreased from 351.19℃ to 331.63℃. The degree of crystallinity increased from 5.12% to 10.98% with 4% silica sol addition, resulting in enhanced rigidity of films. Furthermore, the interaction between polymer and fiber was improved with certain amount of silica sol, resulting in improved sizing degree, ring crush strength, surface strength and folding strength. However, excessive crosslinking will be harmful for the properties of sized paper.展开更多
t A self-templating method was employed to synthesize core-shell nanoparticles with octylmethoxycinamate(OMC), a well-known organic UV absorber, as core and nanosilica particles as shell. The characteristic of this ...t A self-templating method was employed to synthesize core-shell nanoparticles with octylmethoxycinamate(OMC), a well-known organic UV absorber, as core and nanosilica particles as shell. The characteristic of this method is that the whole process requires neither surface treatment for nanosilica particles nor additional surfactant or stabilizer, and all the reactions could be finished in one-pot, which exempts removing template and reduces reaction steps compared to the conventional process. The morphology, structure, particle size distribution, chemical composition and optical property of OMC-SiO2 nanoparticles were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), dynamic light scattering(DLS), FTIR spectrometry and UV absorption spectrometry, respectively. Experiment results indicate that the resulting OMC-SiO2 nanoparticles were perfectly spherical with smooth particle surfaces, and had clear core-shell structures. The particle size could be tuned by altering reaction conditions. In addition, the mechanism of the self-templating method for forming core-shell nanoparticles was discussed.展开更多
Silica and montmorillonite-supported silica nanoparticles were prepared via an acid one step sol-gel process. The synthesized solids were characterized using XRD, FTIR, TEM and N2 adsorption. The effect of preparing t...Silica and montmorillonite-supported silica nanoparticles were prepared via an acid one step sol-gel process. The synthesized solids were characterized using XRD, FTIR, TEM and N2 adsorption. The effect of preparing temperatures on the structure and properties of the silica nanoparticles were studied. The results show that the increase of annealing temperature from 25 to 200℃, don’t change amorphous state of silica. While for montmorillonite-supported silica the clay platelets are delaminated during the sol-gel process. TEM results showed that the average particle size of silica is increased by increasing temperature due to the particle sintering and the clay-silica nanoparticles possessed core–shell morphology with diameter of 29 nm. The surface area measurements showed that by increasing annealing temperature the surface area was decreased due to aggregation of particle. The clay-silica sample showed lower average pore width than that of the silica prepared at 200℃ indicating that it has a macropores structure. The adsorption efficiency of the prepared samples was tested by adsorption of protoporphyrin IX. The highest adsorption efficiency was found for SiO2 prepared at 200℃. Temkin model describe the equilibrium of adsorption of protoporphyrin IX on caly-silica nanoparticles under different conditions.展开更多
We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle pr...We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle properties of polymer nanoparticles were characterized by nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscope (SEM) and X-ray spectroscopy (EDX). Mesoporous materials were selected as the shell materials to encapsulate the smart core as the stable shell. The mesoporous shell was characterized by transmission electron microscopy (TEM) and scanning electron microscope (SEM). All the results showed that a well-defined core-shell structure with mesoporous structure was obtained, and this controllable delivery system will have the great potential in nanomedicine.展开更多
The synthesis and luminescence properties of Zn2 SiO4: Mn phosphor layers on spherical silica spheres, i.e.,a kind of core-shell complex phosphor, Zn2SiO4: Mn@ SiO2 were described.Firstly, monodisperse silica spheres ...The synthesis and luminescence properties of Zn2 SiO4: Mn phosphor layers on spherical silica spheres, i.e.,a kind of core-shell complex phosphor, Zn2SiO4: Mn@ SiO2 were described.Firstly, monodisperse silica spheres were obtained via the Stober method by the hydrolysis of tetraethoxysilane(TEOS) Si ( OC2H5 ) 4 under base condition ( using NH4 OH as the catalyst).Secondly, the silica spheres were coated with a Zn2 SiO4: Mn phosphor layer by a Pechini solgel process.X-ray diffraction ( XRD), scanning electron microscope ( SEM), energy-dispersive X-ray spectrum ( EDS )and photoluminescence (PL) were employed to characterize the resulting complex phosphor.The results confirm that1000 ℃ annealed sample consists of crystalline Zn2SiO4: Mn shells and amorphous SiO2 cores.The phosphor show the green emission of Mn2+ at 521 nm corresponding 4T1 (4G) - 6 A1 (6S) transition, and the possible luminescence mechanism is proposed.展开更多
A facile and general method was described to coat six types of multi-walled carbon nanotubes, functionalized by either noncovalent or covalent way, with smooth silica shells. 3-Aminopropyltriethoxysilane(APTES) and ...A facile and general method was described to coat six types of multi-walled carbon nanotubes, functionalized by either noncovalent or covalent way, with smooth silica shells. 3-Aminopropyltriethoxysilane(APTES) and pH value play important roles in the coating process and the thickness of silica shell could be controlled by the added amount of silicon alkoxides. After the removal of multi-walled carbon nanotubes by calcination, the silica nanotubes were successfully prepared.展开更多
A polystyrene(PS)/nanosilica organic-inorganic hybrid material was prepared from styrene monomer and commercial aqueous silica sol containing large amounts of Si-OH by means of emulsion polymerization. The nanosilic...A polystyrene(PS)/nanosilica organic-inorganic hybrid material was prepared from styrene monomer and commercial aqueous silica sol containing large amounts of Si-OH by means of emulsion polymerization. The nanosilica sol was modified by the addition of the reactive coupling agent methacrylexy propyltrimethoxysilane ( MPS), and the resulting latex particles were protected by surfactants such as sodium dodecyl sulphonate( SDS), hydroxypropyl methyl cellulose ( HMPC), and poly (vinylpyrrolidone) (PVP). The effects of the type of surfactant, the amount of surfactant, and the coupling agent on the shape and stability of the resulting latex particles were investigated. The TEM observation indicates that among SDS, HMPC, and PVP, SDS is the best surfactant. When the content of SDS is 0. 5% and the amount of MPS is 7% in the system, the latex with obvious core-shell structure could be obtained. The average diameters of the monodispersed particles range from 182 to 278 nm, and the average number of silica beads for each composite are 1325 and 4409, respectively. The FrIR analysis shows that PS was chemically linked to silica through MPS. The thermal gravimetric analysis shows that when there is a higher silica content, the hybrid composites have a better heat resistance.展开更多
A facile one-pot method has been developed to synthesize uniform gold@mesoporous silica nanospheres (Au@MSNs), which have a well-defined core-shell structure with ordered mesoporous silica as a shell. The resulting ...A facile one-pot method has been developed to synthesize uniform gold@mesoporous silica nanospheres (Au@MSNs), which have a well-defined core-shell structure with ordered mesoporous silica as a shell. The resulting Au@MSNs have a high surface area (-521 rna/g) and uniform pore size (-2.5 nm) for the mesoporous silica shell. The diameter of the gold core can be regulated by adjusting the amount of HAuC14. The catalytic performance of the Au@MSNs was investigated using the reduction of 4-nitrophenol as a model reaction. The mesopores of the silica shells provide direct access for the reactant molecules to diffuse and subsequently interact with the gold cores. In addition, the Au@MSNs display the great advantage of sintering-resistance to 950 ℃ because the mesoporous silica shells inhibit aggregation or deformation of the gold cores. The high thermal stability enables the Au@MSNs to be employed in high-temperature catalytic reactions.展开更多
Core-shell structured mesoporous silica nanoparticles have been firstly synthesized with the new template from L-leucine methyl ester hydrochloride(H-Leu-OMe·HCl).LMSNs were characterized by transmission electron...Core-shell structured mesoporous silica nanoparticles have been firstly synthesized with the new template from L-leucine methyl ester hydrochloride(H-Leu-OMe·HCl).LMSNs were characterized by transmission electron microscopy(TEM),nitrogen adsorption/desorption,and small-angle X-ray diffraction(SAXRD),demonstrating a well-ordered mesostructure.After loading doxorubicin hydrochloride(Dox) into pores,considerable loading capacity of 30.5% and favorable cumulative release amount were obtained.MTT assay suggested that Dox-loaded LMSNs demonstrated great promise to anti-tumor.The use of MSNs with the synthesized template,as a drug delivery carrier,will exte nd the pharmaceutical applications of silica materials.展开更多
基金the National Natural Science Foundation of China(No.50772131)the National High-tech R&D Program of China(863 Program)(No.2011AA322100)+1 种基金the Key Project of Chinese Ministry of Education(No.106086)the Fundamental Research Funds for the Central Universities(No.2010YJ05)。
文摘A one-step ultrasonic mechanical method was used to synthesize a kind of atmospheric water harvesting material with high water harvesting performance in a wide relative humidity(RH)range,especially at low RH(RH<40%),namely,mesoporous silica capsule(MSC)with core-shell structure.Transmission electron microscopy(TEM),nitrogen adsorption and other characterization techniques were used to study the formation process of nano-microspheres.A new mechanism of self-adaptive concentration gradient regulation of silicon migration and recombination core-shell structure was proposed to explain the formation of a cavity in the MSC system.The core-shell design can enhance the specific surface area and pore volume while maintaining the monodispersity and mesoporous size.To study the water harvesting performance of MSC,solid silica nanoparticles(SSN)and mesoporous silica nanoparticles(MSN)were prepared.In a small atmospheric water collection test(25℃,40%RH),the water vapour adsorption and desorption kinetics of MSC,SSN,MSN and a commercial silica gel(CSG)were compared and analyzed.The results show that the MSC with mesoporous channels and core-shell structure can provide about 0.324 gwater/gadsorbent,79%higher than the CSG(0.181 gwater/gadsorbent).It is 25.1%higher than that of 0.259 gwater/gadsorbentof un-hollowed MSN and 980%higher than that of0.03 gwater/gadsorbentof un-hollowed SSN.The material has a large specific surface area and pore volume,simple preparation method and low cost,which provides a feasible idea for realising atmospheric water collection in arid and semi-arid regions.
文摘Adoption of a low water/powder (W/P) ratio is the key to improve the strength and durability of concrete, which relies on a high packing density because fresh concrete requires excess water to offer flowability. To obtain a high packing density, powders with different particle sizes, including limestone fines (LSF), superfine cement (SFC), condensed silica fume (CSF), were added to the cement paste and the resulting packing densities were measured directly by a newly-developed wet packing test. Results demonstrated that addition of powders with a finer size would more significantly improve the packing density but the powders should be at least as fine as 1/4 of the OPC to effectively improve the packing density. Packing density and voids ratio relationship showed that a small increase in packing density can significantly decrease the voids ratio, which could allow the W/P ratio to be reduced to improve the strength and durability of the concrete without compromising the flowability.
文摘Silica sol prepared by sol-gel method was introduced into poly (butyl acrylate) (PBA)/poly (butyl acrylate-styrene-methacryloxypropyl trimethoxysilane) (PSBM) core-shell emulsions to prepare a series of paper surface sizing agents. The rheological measurement indicated that PSBM emulsions exhibited shear-thinning behavior, and the phenomena became more pronounced with increasing silica sol concentration. Dynamic mechanical analysis (DMA) demonstrated that the stronger interfacial interaction between silica sol and polymer matrix, but microphase separation took place with excess silica sol. Thereby the tensile strength and thermal stability of emulsion films were increased with desirable silica sol concentration, and when silica sol concentration was greater than 6 wt%, the tensile strength leveled off and the decomposition temperature decreased from 351.19℃ to 331.63℃. The degree of crystallinity increased from 5.12% to 10.98% with 4% silica sol addition, resulting in enhanced rigidity of films. Furthermore, the interaction between polymer and fiber was improved with certain amount of silica sol, resulting in improved sizing degree, ring crush strength, surface strength and folding strength. However, excessive crosslinking will be harmful for the properties of sized paper.
基金Supported by the National Natural Science Foundation of China(No.50673033)
文摘t A self-templating method was employed to synthesize core-shell nanoparticles with octylmethoxycinamate(OMC), a well-known organic UV absorber, as core and nanosilica particles as shell. The characteristic of this method is that the whole process requires neither surface treatment for nanosilica particles nor additional surfactant or stabilizer, and all the reactions could be finished in one-pot, which exempts removing template and reduces reaction steps compared to the conventional process. The morphology, structure, particle size distribution, chemical composition and optical property of OMC-SiO2 nanoparticles were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), dynamic light scattering(DLS), FTIR spectrometry and UV absorption spectrometry, respectively. Experiment results indicate that the resulting OMC-SiO2 nanoparticles were perfectly spherical with smooth particle surfaces, and had clear core-shell structures. The particle size could be tuned by altering reaction conditions. In addition, the mechanism of the self-templating method for forming core-shell nanoparticles was discussed.
文摘Silica and montmorillonite-supported silica nanoparticles were prepared via an acid one step sol-gel process. The synthesized solids were characterized using XRD, FTIR, TEM and N2 adsorption. The effect of preparing temperatures on the structure and properties of the silica nanoparticles were studied. The results show that the increase of annealing temperature from 25 to 200℃, don’t change amorphous state of silica. While for montmorillonite-supported silica the clay platelets are delaminated during the sol-gel process. TEM results showed that the average particle size of silica is increased by increasing temperature due to the particle sintering and the clay-silica nanoparticles possessed core–shell morphology with diameter of 29 nm. The surface area measurements showed that by increasing annealing temperature the surface area was decreased due to aggregation of particle. The clay-silica sample showed lower average pore width than that of the silica prepared at 200℃ indicating that it has a macropores structure. The adsorption efficiency of the prepared samples was tested by adsorption of protoporphyrin IX. The highest adsorption efficiency was found for SiO2 prepared at 200℃. Temkin model describe the equilibrium of adsorption of protoporphyrin IX on caly-silica nanoparticles under different conditions.
基金Funded by National Natural Science Foundation of China (Nos.51861135313,U1663225,U1662134,21711530705,21673282,21473246)Fundamental Research Funds for the Central Universities (Nos.19lgpy112,19lgzd16,2019IB005)+3 种基金National Key R&D Program of China (No.2017YFC1103800)Program for Changjiang Scholars and Innovative Research Team in University (No.IRT_15R52)International Science&Technology Cooperation Program of China (No.2015DFE52870)Jilin Province Science and Technology Development Plan (No.20180101208JC)
文摘We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle properties of polymer nanoparticles were characterized by nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscope (SEM) and X-ray spectroscopy (EDX). Mesoporous materials were selected as the shell materials to encapsulate the smart core as the stable shell. The mesoporous shell was characterized by transmission electron microscopy (TEM) and scanning electron microscope (SEM). All the results showed that a well-defined core-shell structure with mesoporous structure was obtained, and this controllable delivery system will have the great potential in nanomedicine.
文摘The synthesis and luminescence properties of Zn2 SiO4: Mn phosphor layers on spherical silica spheres, i.e.,a kind of core-shell complex phosphor, Zn2SiO4: Mn@ SiO2 were described.Firstly, monodisperse silica spheres were obtained via the Stober method by the hydrolysis of tetraethoxysilane(TEOS) Si ( OC2H5 ) 4 under base condition ( using NH4 OH as the catalyst).Secondly, the silica spheres were coated with a Zn2 SiO4: Mn phosphor layer by a Pechini solgel process.X-ray diffraction ( XRD), scanning electron microscope ( SEM), energy-dispersive X-ray spectrum ( EDS )and photoluminescence (PL) were employed to characterize the resulting complex phosphor.The results confirm that1000 ℃ annealed sample consists of crystalline Zn2SiO4: Mn shells and amorphous SiO2 cores.The phosphor show the green emission of Mn2+ at 521 nm corresponding 4T1 (4G) - 6 A1 (6S) transition, and the possible luminescence mechanism is proposed.
基金Supported by the National Basic Research Program of China(No.2006CB705604)the National Natural Science Foundation of China(No.20907028)+4 种基金the Project of Science and Technology Commission of Shanghai MunicipalityChina(Nos.09XD1401800 09530501200)the Project of Shanghai Leading Academic Disciplines China(No.S30109)
文摘A facile and general method was described to coat six types of multi-walled carbon nanotubes, functionalized by either noncovalent or covalent way, with smooth silica shells. 3-Aminopropyltriethoxysilane(APTES) and pH value play important roles in the coating process and the thickness of silica shell could be controlled by the added amount of silicon alkoxides. After the removal of multi-walled carbon nanotubes by calcination, the silica nanotubes were successfully prepared.
基金Supported by the National Natural Science Foundation of China(No. 50373037)the Special Funds for Major State BasicResearch Projects ( No. 2005CB623802) Specialized Research Fund for the Doctoral Program of Higher Education ( No.20040335077).
文摘A polystyrene(PS)/nanosilica organic-inorganic hybrid material was prepared from styrene monomer and commercial aqueous silica sol containing large amounts of Si-OH by means of emulsion polymerization. The nanosilica sol was modified by the addition of the reactive coupling agent methacrylexy propyltrimethoxysilane ( MPS), and the resulting latex particles were protected by surfactants such as sodium dodecyl sulphonate( SDS), hydroxypropyl methyl cellulose ( HMPC), and poly (vinylpyrrolidone) (PVP). The effects of the type of surfactant, the amount of surfactant, and the coupling agent on the shape and stability of the resulting latex particles were investigated. The TEM observation indicates that among SDS, HMPC, and PVP, SDS is the best surfactant. When the content of SDS is 0. 5% and the amount of MPS is 7% in the system, the latex with obvious core-shell structure could be obtained. The average diameters of the monodispersed particles range from 182 to 278 nm, and the average number of silica beads for each composite are 1325 and 4409, respectively. The FrIR analysis shows that PS was chemically linked to silica through MPS. The thermal gravimetric analysis shows that when there is a higher silica content, the hybrid composites have a better heat resistance.
基金This work was supported by the National Basic Research Program (973 Project) of China (Nos. 2013CB934104 and 2012CB224805), the National Natural Science Foundation of China (No. 21210004), the Shanghai Leading Academic Discipline Project (B108), and the Science and Technology Commission of Shanghai Municipality (No. 08DZ2270500).
文摘A facile one-pot method has been developed to synthesize uniform gold@mesoporous silica nanospheres (Au@MSNs), which have a well-defined core-shell structure with ordered mesoporous silica as a shell. The resulting Au@MSNs have a high surface area (-521 rna/g) and uniform pore size (-2.5 nm) for the mesoporous silica shell. The diameter of the gold core can be regulated by adjusting the amount of HAuC14. The catalytic performance of the Au@MSNs was investigated using the reduction of 4-nitrophenol as a model reaction. The mesopores of the silica shells provide direct access for the reactant molecules to diffuse and subsequently interact with the gold cores. In addition, the Au@MSNs display the great advantage of sintering-resistance to 950 ℃ because the mesoporous silica shells inhibit aggregation or deformation of the gold cores. The high thermal stability enables the Au@MSNs to be employed in high-temperature catalytic reactions.
基金supported by the Career Development Support Plan for Young and Middle-aged Teachers in Shenyang Pharmaceutical University (No.ZQN2018005)。
文摘Core-shell structured mesoporous silica nanoparticles have been firstly synthesized with the new template from L-leucine methyl ester hydrochloride(H-Leu-OMe·HCl).LMSNs were characterized by transmission electron microscopy(TEM),nitrogen adsorption/desorption,and small-angle X-ray diffraction(SAXRD),demonstrating a well-ordered mesostructure.After loading doxorubicin hydrochloride(Dox) into pores,considerable loading capacity of 30.5% and favorable cumulative release amount were obtained.MTT assay suggested that Dox-loaded LMSNs demonstrated great promise to anti-tumor.The use of MSNs with the synthesized template,as a drug delivery carrier,will exte nd the pharmaceutical applications of silica materials.