BACKGROUND Diabetic nephropathy(DN)is the most frequent chronic microvascular consequence of diabetes,and podocyte injury and malfunction are closely related to the development of DN.Studies have shown that corilagin(...BACKGROUND Diabetic nephropathy(DN)is the most frequent chronic microvascular consequence of diabetes,and podocyte injury and malfunction are closely related to the development of DN.Studies have shown that corilagin(Cor)has hepatoprotective,anti-inflammatory,antibacterial,antioxidant,anti-hypertensive,antidiabetic,and anti-tumor activities.AIM To explore the protective effect of Cor against podocyte injury in DN mice and the underlying mechanisms.METHODS Streptozotocin and a high-fat diet were combined to generate DN mice models,which were then divided into either a Cor group or a DN group(n=8 in each group).Mice in the Cor group were intraperitoneally injected with Cor(30 mg/kg/d)for 12 wk,and mice in the DN group were treated with saline.Biochemical analysis was used to measure the blood lipid profiles.Hematoxylin and eosin staining was used to detect pathological changes in kidney tissue.Immunohistochemistry and Western blotting were used to assess the protein expression of nephrin and podocin.Mouse podocyte cells(MPC5)were cultured and treated with glucose(5 mmol/L),Cor(50μM),high glucose(HG)(30 mmol/L),and HG(30 mmol/L)plus Cor(50μM).Real-time quantitative PCR and Western blotting RESULTS Compared with the control group,the DN mice models had increased fasting blood glucose,glycosylated hemoglobin,triglycerides,and total cholesterol,decreased nephrin and podocin expression,increased apoptosis rate,elevated inflammatory cytokines,and enhanced oxidative stress.All of the conditions mentioned above were alleviated after intervention with Cor.In addition,Cor therapy improved SIRT1 and AMPK expression(P<0.001),inhibited reactive oxygen species and oxidative stress,and elevated autophagy in HG-induced podocytes(P<0.01).CONCLUSION Cor alleviates podocyte injury by regulating autophagy via the SIRT1-AMPK pathway,thereby exerting its protective impact on renal function in DN mice.展开更多
Severe acute respiratory syndrome coronavirus-2(SARS-CoV-2) has become one major threat to human population health.The RNA-dependent RNA polymerase(RdRp) presents an ideal target of antivirals,whereas nucleoside analo...Severe acute respiratory syndrome coronavirus-2(SARS-CoV-2) has become one major threat to human population health.The RNA-dependent RNA polymerase(RdRp) presents an ideal target of antivirals,whereas nucleoside analogs inhibitor is hindered by the proofreading activity of coronavirus.Herein,we report that corilagin(RAI-S-37) as a non-nucleoside inhibitor of SARS-CoV-2 RdRp,binds directly to RdRp,effectively inhibits the polymerase activity in both cell-free and cell-based assays,fully resists the proofreading activity and potently inhibits SARS-CoV-2 infection with a low 50% effective concentration(EC50) value of 0.13 μmol/L.Computation modeling predicts that RAI-S-37 lands at the palm domain of RdRp and prevents conformational changes required for nucleotide incorporation by RdRp.In addition,combination of RAI-S-37 with remdesivir exhibits additive activity against antiSARS-CoV-2 RdRp.Together with the current data available on the safety and pharmacokinetics of corilagin as a medicinal herbal agent,these results demonstrate the potential of being developed into one of the much-needed SARS-CoV-2 therapeutics.展开更多
基金Supported by Shanghai Pudong New Area Leading Talents Training Program Project,No.PWR12020-02Shanghai Pudong New Area Excellent Young Medical Talents Training Program Project,No.PWRq2023-40Shanghai Pudong New Area Health and Family Planning Scientific Research Project,No.PW2022A-91.
文摘BACKGROUND Diabetic nephropathy(DN)is the most frequent chronic microvascular consequence of diabetes,and podocyte injury and malfunction are closely related to the development of DN.Studies have shown that corilagin(Cor)has hepatoprotective,anti-inflammatory,antibacterial,antioxidant,anti-hypertensive,antidiabetic,and anti-tumor activities.AIM To explore the protective effect of Cor against podocyte injury in DN mice and the underlying mechanisms.METHODS Streptozotocin and a high-fat diet were combined to generate DN mice models,which were then divided into either a Cor group or a DN group(n=8 in each group).Mice in the Cor group were intraperitoneally injected with Cor(30 mg/kg/d)for 12 wk,and mice in the DN group were treated with saline.Biochemical analysis was used to measure the blood lipid profiles.Hematoxylin and eosin staining was used to detect pathological changes in kidney tissue.Immunohistochemistry and Western blotting were used to assess the protein expression of nephrin and podocin.Mouse podocyte cells(MPC5)were cultured and treated with glucose(5 mmol/L),Cor(50μM),high glucose(HG)(30 mmol/L),and HG(30 mmol/L)plus Cor(50μM).Real-time quantitative PCR and Western blotting RESULTS Compared with the control group,the DN mice models had increased fasting blood glucose,glycosylated hemoglobin,triglycerides,and total cholesterol,decreased nephrin and podocin expression,increased apoptosis rate,elevated inflammatory cytokines,and enhanced oxidative stress.All of the conditions mentioned above were alleviated after intervention with Cor.In addition,Cor therapy improved SIRT1 and AMPK expression(P<0.001),inhibited reactive oxygen species and oxidative stress,and elevated autophagy in HG-induced podocytes(P<0.01).CONCLUSION Cor alleviates podocyte injury by regulating autophagy via the SIRT1-AMPK pathway,thereby exerting its protective impact on renal function in DN mice.
基金supported by the National MegaProject for Infectious Disease (2018ZX10301408, China)the National Mega-Project for Significant New Drug Discovery (2018ZX09711003-002-002, China)+3 种基金the National Natural Science Foundation of China (81802019 and 81902075)the Beijing Natural Science Foundation (7184228, China)CAMS Innovation Fund for Medical Sciences (2018-I2M-3-004 and 2020-I2M-2010, China)the Peking Union Medical College Youth Fund (3332016063 and 3332018096, China)。
文摘Severe acute respiratory syndrome coronavirus-2(SARS-CoV-2) has become one major threat to human population health.The RNA-dependent RNA polymerase(RdRp) presents an ideal target of antivirals,whereas nucleoside analogs inhibitor is hindered by the proofreading activity of coronavirus.Herein,we report that corilagin(RAI-S-37) as a non-nucleoside inhibitor of SARS-CoV-2 RdRp,binds directly to RdRp,effectively inhibits the polymerase activity in both cell-free and cell-based assays,fully resists the proofreading activity and potently inhibits SARS-CoV-2 infection with a low 50% effective concentration(EC50) value of 0.13 μmol/L.Computation modeling predicts that RAI-S-37 lands at the palm domain of RdRp and prevents conformational changes required for nucleotide incorporation by RdRp.In addition,combination of RAI-S-37 with remdesivir exhibits additive activity against antiSARS-CoV-2 RdRp.Together with the current data available on the safety and pharmacokinetics of corilagin as a medicinal herbal agent,these results demonstrate the potential of being developed into one of the much-needed SARS-CoV-2 therapeutics.