The feasibility of steel slag used as an iron fertilizer was studied in a pot experiment with corn. Slag alone or acidified slag was added to two Fe-deficient calcareous soils at different rates. Results showed that m...The feasibility of steel slag used as an iron fertilizer was studied in a pot experiment with corn. Slag alone or acidified slag was added to two Fe-deficient calcareous soils at different rates. Results showed that moderate rates (10 and 20 g kg-1) of slag or acidified slag substantially increased corn dry matter yield and Fe uptake. Application of steel slag increased the residual concentration of ammonium bicarbonate-diethylenetriamine pentaacetic acid (AB-DTPA) extractable Fe in the soils. The increase of extractable Fe was usually proportional to the application rate, and enhanced by the acidification of slag. Steel slag appeared to be a promising and inexpensive source of Fe to alleviate crop Fe chlorosis in Fe-deficient calcareous soils.展开更多
The ridge and furrow rainfall harvesting(RFRH) system is used for dryland crop production in northwest of China.To determine the effects of RFRH using different mulching materials on corn growth and water use effici...The ridge and furrow rainfall harvesting(RFRH) system is used for dryland crop production in northwest of China.To determine the effects of RFRH using different mulching materials on corn growth and water use efficiency(WUE),a field experiment was conducted during 2008-2010 at the Heyang Dryland Experimental Station,China.Four treatments were used in the study.Furrows received uncovered mulching in all RFRH treatments whereas ridges were mulched with plastic film(PF),biodegradable film(BF) or liquid film(LF).A conventional flat field without mulching was used as the control(CK).The results indicated that the average soil water storage at depths of 0-200 cm were 8.2 and 7.3%,respectively higher with PF and BF than with CK.However,LF improved soil water storage during the early growth stage of the crop.Compared with CK,the corn yields with PF and BF were increased by 20.4 and 19.4%,respectively,and WUE with each treatment increased by 23.3 and 21.7%,respectively.There were no significant differences in corn yield or WUE with the PF and BF treatments.The net income was the highest with PF,followed by BF,and the 3-yr average net incomes with these treatments were increased by 2 559 and 2 430 CNY ha-1,respectively,compared with CK.BF and PF had similar effects in enhancing the soil water content,crop yield and net income.Therefore,it can be concluded that biodegradable film may be a sustainable ecological alternative to plastic film for use in the RFRH system in northwest of China.展开更多
Plastic cover as a method to minimize soil water evaporation and improve water use efficiency, was used for corn during the whole growing period in a desert area. Field studies were conducted to determine the effect o...Plastic cover as a method to minimize soil water evaporation and improve water use efficiency, was used for corn during the whole growing period in a desert area. Field studies were conducted to determine the effect of plastic covering management on corn growth and rooting pattern and its relationship with changes in climate. Four treatments, 0) bared soil without cover) 1) covering one side of the crop, 2) covering both sides of the crop, and 3) covering the surface totally, were established on a sandy loam soil. Results showed that treatment 0 was significantly different from others and revealed that plastic covering was not always good to corn growth. Improper usage of plastic cover might weaken root development and thereafter lower the total yield of the crop. Suitable practices combining different methods discussed could not only improve water use efficiency but also increase the crop yield.展开更多
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture,...Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture, an increasing number of researchers are investigating ways to improve the efficiency of PGPR use to reduce chemical fertilizer inputs needed for crop production. Accordingly, greenhouse studies were conducted to evaluate the impact of PGPR inoculants on biomass production and nitrogen (N) content of corn (Zea mays L.) under different N levels. Treatments included three PGPR inoculants (two mixtures of PGPR strains and one control without PGPR) and five N application levels (0%, 25%, 50%, 75%, and 100% of the recommended N rate of 135 kg N ha−1). Results showed that inoculation of PGPR significantly increased plant height, stem diameter, leaf area, and root morphology of corn compared to no PGPR application under the same N levels at the V6 growth stage, but few differences were observed at the V4 stage. PGPR with 50% of the full N rate produced corn biomass and N concentrations equivalent to or greater than that of the full N rate without inoculants at the VT stage. In conclusion, mixtures of PGPR can potentially reduce inorganic N fertilization without affecting corn plant growth parameters. Future research is needed under field conditions to determine if these PGPR inoculants can be integrated as a bio-fertilizer in crop production nutrient management strategies.展开更多
To clarify association between armyworm(Mythimna separata) damage level and the corn growth and weed occurrence, we investigated corn plant height, stem diameter and vigor as well as weed coverage and biomass. The i...To clarify association between armyworm(Mythimna separata) damage level and the corn growth and weed occurrence, we investigated corn plant height, stem diameter and vigor as well as weed coverage and biomass. The investigations were conducted at three locations of Shaanxi Province, China which were suffered seriously from armyworm. Significant correlations were found between the parameters analyzed. At stunted corn growth and presence of plenty of weeds, the armyworm damage tended to be heavy; oppositely, when corn grew well and weed density were low, armyworm harm was the minimal. Therefore, corn growing status and weed density can significantly affect armyworm damage level. Our results imply that promoting corn growth and timely removal of weeds are conducive to reducing armyworm occurrence.展开更多
In view of the risks induced by the inhibitory effects of applying impracticably large amounts of sewage sludge biochar(SSB)to the alkaline soil,this field study investigated the influence of moderate biochar amendmen...In view of the risks induced by the inhibitory effects of applying impracticably large amounts of sewage sludge biochar(SSB)to the alkaline soil,this field study investigated the influence of moderate biochar amendments(0,1500,4500,and 9000 kg/hm2)on corn growth,alkaline soil properties,and the uptake of potentially toxic elements(PTEs).The results showed that applying more SSB would decrease the ammonium nitrogen concentration and increase the available phosphorus and potassium concentrations,which inhibited corn plant growth because of high background nutrient levels of the alkaline soil.When the alkaline soil was amended with 1500 kg/hm2 SSB,the dry weight of 100 niblets increased from 32.11 g in the control to 35.07 g.There was no significant variation in the total concentration of PTEs in the soil.The concentrations of Mn,Ni,Cu,and Zn in niblets decreased from 5.54,0.83,2.26,and 27.15 mg/kg in the control to 4.47,0.62,1.30,and 23.45 mg/kg,respectively.Accordingly,the health risk from corn consumption was significantly reduced.Furthermore,the combination of SSB and fertilizer improved corn growth and reduced the risk of consumption of PTEs.Therefore,considering the increase in corn fruit yield and the decrease in consumption risk,applying 1500 kg/hm2 of biochar to alkaline soils is a realistically achievable rate,which can broaden the utilization of SSB for remediation of different types of soil.展开更多
Two experiments were conducted to investigate the effect of dietary supplementation with phytase transgenic corn (PTC) on growth performance,phosphorus (P) utilization and excretion in growing pigs.In Exp.1,180 pi...Two experiments were conducted to investigate the effect of dietary supplementation with phytase transgenic corn (PTC) on growth performance,phosphorus (P) utilization and excretion in growing pigs.In Exp.1,180 pigs (Large White × Landrace,BW=37.7 kg) were randomly allotted to 4 treatments with 5 replicates of 9 pigs each in order to evaluate the effect of PTC supplementation in low-P diets on growth performance.Four corn soybean meal-based diets consisted of a positive control (PC) diet,a diet containing 500 units (U) of exogenous phytase kg-1 (EP) on the basis of low-P (inorganic P reduced by 0.05% from PC diet) and the low-P+500 (PTC1) or 750 (PTC2) phytase U of PTC kg-1.In Exp.2,20 barrows (Large White×Landrace,BW=31 kg,4 treatments with 5 replicates of 1 pig each) were randomly selected to evaluate the effect of PTC in low-P diets on serum parameters and nutrient utilization.Diets in Exp.2 were similar to those in Exp.1 except that the EP group was replaced by a low-P diet without exogenous phytase supplementation as a negative control (NC) group.The results from Exp.1 showed that the average daily gain (ADG) in the PTC2 group was significantly higher (P〈0.05) than that in the EP group over all periods.On the other hand,the feed:gain (F:G) ratio of the EP group was significantly higher (P〈0.05) than that of the PTC2 group during 1-21 and 1-42 d,respectively.There were no differences in average daily feed intake (ADFI) among all treatments (P〉0.05).The results from Exp.2 showed that the concentration of serum Ca in the NC group was the highest (P〈0.05),while the concentration of serum P in the PTC2 group was the highest (P〈0.05) among all treatments.There was a significant decrease (P〈0.05) in the P apparent digestibility of the NC group compared with the other groups,and that of PTC2 group was the best.Furthermore,fecal P excretion was reduced (P〈0.05) from 1.80 g d-1 in the PC group to 1.28 g d-1 in the PTC2 group.In conclusion,dietary supplementation with PTC could reduce the application of inorganic P,decrease fecal P excretion,and improve the growth performance of growing pigs.展开更多
Using pot experiment to study the effect of new fertilizer ammonium polyphosphate on plant growth and uptake of phosphorus and zinc in corn seedlings. The results showed that under the conditions of equal phosphate fe...Using pot experiment to study the effect of new fertilizer ammonium polyphosphate on plant growth and uptake of phosphorus and zinc in corn seedlings. The results showed that under the conditions of equal phosphate fertilizer application, ammonium polyphosphate added to phosphate fertilizer could significantly improve the plant height and stem diameter of corn seedlings after sowed for 60 days, while improved biomass of corn overground part and roots and root shoot ratio. When the ratio of ammonium polyphosphate and diammonium phosphate was 2:1 (available phosphorus ratio), the effect was the best. Ammonium polyphosphate had little effect on the phosphorus content of overground part of corn seedlings, but increased the phosphorus cumulant. In addition, ammonium polyphosphate applica- tion significantly improved the zinc concentration and zinc cumulant of corn over- ground part and roots. The results showed that ammonium polyphosphate had bet- ter bioavailability, meanwhile promoted the absorption of microelement zinc in crops.展开更多
Under the background of global climate change,we analyze the change tendency of average temperature and amount of precipitation influencing the corn's growth period. The results show that from March to August,the ...Under the background of global climate change,we analyze the change tendency of average temperature and amount of precipitation influencing the corn's growth period. The results show that from March to August,the monthly temperatures show an upward trend,but the rise is different in different months,and the maximum temperature rise is in May. Precipitation in different months has different trends. Climate change brings about favorable conditions at high altitudes in Fengjie,reduces production due to the temperature drop after the beginning of autumn,and increases the pressure on the corn supply.展开更多
The S-endotoxin genes of Bacillus thuringiensis (Bt) and proteinase inhibitor (PI) genes are two kinds of genes popularly used for developing transgenic plants resistant to insect pests. To clarify whether there is an...The S-endotoxin genes of Bacillus thuringiensis (Bt) and proteinase inhibitor (PI) genes are two kinds of genes popularly used for developing transgenic plants resistant to insect pests. To clarify whether there is any risk concerning the effects of pollens from these transgenic crops on non-target insects with economic importance, such as the effects on the growth and development as well as cocoon quality of the silkworm, Bombyx mori Linnaeus, a series of feeding experiments were conducted, using pollens from transgenic cotton or corn containing cry 1Ac, cry1A+CpTI or crylAb genes, compared with pollens from non-transgenic normal cotton and corn as well as the non-pollen treatment. In contrast to the latter ones, pollens from transgenic plants showed no significant adverse effects on larval mortality, cocoon weight, pupa weight, cocoon shell weight, pupation rate, emergence rate and fecundity of the silkworm after neonates were fed with the pollens for 72 h. In addition, no dosage effects of pollens were found. Though the duration of 1st instar larvae was prolonged in the case of feeding with transgenic pollens as compared with those of the non-pollen treatment , but they were not significantly different from those fed with pollens from non-transgenic cotton or corn. Meanwhile, the body weight of the 3rd instar molters fed with transgenic pollens was obviously different from those for non-pollen treatment, and was all significantly heavier than that of the controls. Consequently, it is considered that the adverse effect of pollens from transgenic insect-resistant cotton and corn on the growth and development of the silkworm is negligible.展开更多
To develop an efficient water use strategy for crop irrigation, we need to know how much water can be reduced without decreasing yield. A study was designed to determine corn growth stages at which water could be redu...To develop an efficient water use strategy for crop irrigation, we need to know how much water can be reduced without decreasing yield. A study was designed to determine corn growth stages at which water could be reduced without affecting grain yield, and at what soil moisture level water deficit stress begins in the plants in a silt loam soil. An experiment was conducted in a randomized complete block with a 3 × 4 factorial design in four replications, where treatments consisted of three soil moisture levels [100%, 75%, and 50% of field capacity (FC) of a silt loam soil by weight] and four growth stages [fourteen leaf stage (V14), silking (R1), milk (R3), and dent (R5) stages] in a greenhouse. Growth stages at the reproductive and grain fill stages of corn were selected because this study was intended for the Mississippi Delta, where there is frequent drought during these growth stages making irrigation necessary for corn production, whereas there is usually adequate rainfall during the vegetative growth stages. Results from this study showed that reducing soil moisture from 100% FC (fully irrigated) to 75% FC of a silt loam soil starting at the R1 growth stage in corn did not reduce yield significantly compared to yield from the 100% FC, while saving a significant amount of water. Physiological investigations at the three soil moisture treatments showed that a mild moisture deficit stress might have started at the 75% FC treatment. With further investigation, if savings in water at 75% FC result in a significant reduction in energy cost, it may be profitable to reduce soil moisture to 75% FC in a silt loam soil.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 30270800).
文摘The feasibility of steel slag used as an iron fertilizer was studied in a pot experiment with corn. Slag alone or acidified slag was added to two Fe-deficient calcareous soils at different rates. Results showed that moderate rates (10 and 20 g kg-1) of slag or acidified slag substantially increased corn dry matter yield and Fe uptake. Application of steel slag increased the residual concentration of ammonium bicarbonate-diethylenetriamine pentaacetic acid (AB-DTPA) extractable Fe in the soils. The increase of extractable Fe was usually proportional to the application rate, and enhanced by the acidification of slag. Steel slag appeared to be a promising and inexpensive source of Fe to alleviate crop Fe chlorosis in Fe-deficient calcareous soils.
基金supported by the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2006BAD29B03)the 111 Project (B12007)the Shaanxi Technology Project, China (2010K02-08-2)
文摘The ridge and furrow rainfall harvesting(RFRH) system is used for dryland crop production in northwest of China.To determine the effects of RFRH using different mulching materials on corn growth and water use efficiency(WUE),a field experiment was conducted during 2008-2010 at the Heyang Dryland Experimental Station,China.Four treatments were used in the study.Furrows received uncovered mulching in all RFRH treatments whereas ridges were mulched with plastic film(PF),biodegradable film(BF) or liquid film(LF).A conventional flat field without mulching was used as the control(CK).The results indicated that the average soil water storage at depths of 0-200 cm were 8.2 and 7.3%,respectively higher with PF and BF than with CK.However,LF improved soil water storage during the early growth stage of the crop.Compared with CK,the corn yields with PF and BF were increased by 20.4 and 19.4%,respectively,and WUE with each treatment increased by 23.3 and 21.7%,respectively.There were no significant differences in corn yield or WUE with the PF and BF treatments.The net income was the highest with PF,followed by BF,and the 3-yr average net incomes with these treatments were increased by 2 559 and 2 430 CNY ha-1,respectively,compared with CK.BF and PF had similar effects in enhancing the soil water content,crop yield and net income.Therefore,it can be concluded that biodegradable film may be a sustainable ecological alternative to plastic film for use in the RFRH system in northwest of China.
文摘Plastic cover as a method to minimize soil water evaporation and improve water use efficiency, was used for corn during the whole growing period in a desert area. Field studies were conducted to determine the effect of plastic covering management on corn growth and rooting pattern and its relationship with changes in climate. Four treatments, 0) bared soil without cover) 1) covering one side of the crop, 2) covering both sides of the crop, and 3) covering the surface totally, were established on a sandy loam soil. Results showed that treatment 0 was significantly different from others and revealed that plastic covering was not always good to corn growth. Improper usage of plastic cover might weaken root development and thereafter lower the total yield of the crop. Suitable practices combining different methods discussed could not only improve water use efficiency but also increase the crop yield.
文摘Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture, an increasing number of researchers are investigating ways to improve the efficiency of PGPR use to reduce chemical fertilizer inputs needed for crop production. Accordingly, greenhouse studies were conducted to evaluate the impact of PGPR inoculants on biomass production and nitrogen (N) content of corn (Zea mays L.) under different N levels. Treatments included three PGPR inoculants (two mixtures of PGPR strains and one control without PGPR) and five N application levels (0%, 25%, 50%, 75%, and 100% of the recommended N rate of 135 kg N ha−1). Results showed that inoculation of PGPR significantly increased plant height, stem diameter, leaf area, and root morphology of corn compared to no PGPR application under the same N levels at the V6 growth stage, but few differences were observed at the V4 stage. PGPR with 50% of the full N rate produced corn biomass and N concentrations equivalent to or greater than that of the full N rate without inoculants at the VT stage. In conclusion, mixtures of PGPR can potentially reduce inorganic N fertilization without affecting corn plant growth parameters. Future research is needed under field conditions to determine if these PGPR inoculants can be integrated as a bio-fertilizer in crop production nutrient management strategies.
基金supported by the National Public Welfare Industry(Agriculture)Scientific Research of China(201403031)the National Key Research and Development Program of China(2017YFD0201807)the Project of Agricultural Science and Technology Innovation Transformation in Shaanxi Province,China
文摘To clarify association between armyworm(Mythimna separata) damage level and the corn growth and weed occurrence, we investigated corn plant height, stem diameter and vigor as well as weed coverage and biomass. The investigations were conducted at three locations of Shaanxi Province, China which were suffered seriously from armyworm. Significant correlations were found between the parameters analyzed. At stunted corn growth and presence of plenty of weeds, the armyworm damage tended to be heavy; oppositely, when corn grew well and weed density were low, armyworm harm was the minimal. Therefore, corn growing status and weed density can significantly affect armyworm damage level. Our results imply that promoting corn growth and timely removal of weeds are conducive to reducing armyworm occurrence.
基金supported by the National Key Research and Development Project[2020YFC1908904]Science and Technology Program of Xiamen[3502Z20193076]+1 种基金Natural Science Foundation of Fujian Province[2019J01135]Strategic Priority Research Program of the Chinese Academy of Sciences[XDA23020504]。
文摘In view of the risks induced by the inhibitory effects of applying impracticably large amounts of sewage sludge biochar(SSB)to the alkaline soil,this field study investigated the influence of moderate biochar amendments(0,1500,4500,and 9000 kg/hm2)on corn growth,alkaline soil properties,and the uptake of potentially toxic elements(PTEs).The results showed that applying more SSB would decrease the ammonium nitrogen concentration and increase the available phosphorus and potassium concentrations,which inhibited corn plant growth because of high background nutrient levels of the alkaline soil.When the alkaline soil was amended with 1500 kg/hm2 SSB,the dry weight of 100 niblets increased from 32.11 g in the control to 35.07 g.There was no significant variation in the total concentration of PTEs in the soil.The concentrations of Mn,Ni,Cu,and Zn in niblets decreased from 5.54,0.83,2.26,and 27.15 mg/kg in the control to 4.47,0.62,1.30,and 23.45 mg/kg,respectively.Accordingly,the health risk from corn consumption was significantly reduced.Furthermore,the combination of SSB and fertilizer improved corn growth and reduced the risk of consumption of PTEs.Therefore,considering the increase in corn fruit yield and the decrease in consumption risk,applying 1500 kg/hm2 of biochar to alkaline soils is a realistically achievable rate,which can broaden the utilization of SSB for remediation of different types of soil.
基金supported by the Key Program of Transgenic Plant Breeding,China (2008ZX08003-002)the Major Special Project of Guangdong Province,China(2009A080303009)+1 种基金the National Major Science Research Program of China (2009CB941601)the Special Fund for Agro-Scientific Research in the Public Interest,China (Agriculture,201003011)
文摘Two experiments were conducted to investigate the effect of dietary supplementation with phytase transgenic corn (PTC) on growth performance,phosphorus (P) utilization and excretion in growing pigs.In Exp.1,180 pigs (Large White × Landrace,BW=37.7 kg) were randomly allotted to 4 treatments with 5 replicates of 9 pigs each in order to evaluate the effect of PTC supplementation in low-P diets on growth performance.Four corn soybean meal-based diets consisted of a positive control (PC) diet,a diet containing 500 units (U) of exogenous phytase kg-1 (EP) on the basis of low-P (inorganic P reduced by 0.05% from PC diet) and the low-P+500 (PTC1) or 750 (PTC2) phytase U of PTC kg-1.In Exp.2,20 barrows (Large White×Landrace,BW=31 kg,4 treatments with 5 replicates of 1 pig each) were randomly selected to evaluate the effect of PTC in low-P diets on serum parameters and nutrient utilization.Diets in Exp.2 were similar to those in Exp.1 except that the EP group was replaced by a low-P diet without exogenous phytase supplementation as a negative control (NC) group.The results from Exp.1 showed that the average daily gain (ADG) in the PTC2 group was significantly higher (P〈0.05) than that in the EP group over all periods.On the other hand,the feed:gain (F:G) ratio of the EP group was significantly higher (P〈0.05) than that of the PTC2 group during 1-21 and 1-42 d,respectively.There were no differences in average daily feed intake (ADFI) among all treatments (P〉0.05).The results from Exp.2 showed that the concentration of serum Ca in the NC group was the highest (P〈0.05),while the concentration of serum P in the PTC2 group was the highest (P〈0.05) among all treatments.There was a significant decrease (P〈0.05) in the P apparent digestibility of the NC group compared with the other groups,and that of PTC2 group was the best.Furthermore,fecal P excretion was reduced (P〈0.05) from 1.80 g d-1 in the PC group to 1.28 g d-1 in the PTC2 group.In conclusion,dietary supplementation with PTC could reduce the application of inorganic P,decrease fecal P excretion,and improve the growth performance of growing pigs.
基金Independent Innovation Achievement Transformation Special Project in Shandong Province:Research on Key Technology Of Comprehensive Utilization of Middle and Low Grade Phosphate Rock Resources and Industrialization Demonstration(2013ZHZX2A0904)~~
文摘Using pot experiment to study the effect of new fertilizer ammonium polyphosphate on plant growth and uptake of phosphorus and zinc in corn seedlings. The results showed that under the conditions of equal phosphate fertilizer application, ammonium polyphosphate added to phosphate fertilizer could significantly improve the plant height and stem diameter of corn seedlings after sowed for 60 days, while improved biomass of corn overground part and roots and root shoot ratio. When the ratio of ammonium polyphosphate and diammonium phosphate was 2:1 (available phosphorus ratio), the effect was the best. Ammonium polyphosphate had little effect on the phosphorus content of overground part of corn seedlings, but increased the phosphorus cumulant. In addition, ammonium polyphosphate applica- tion significantly improved the zinc concentration and zinc cumulant of corn over- ground part and roots. The results showed that ammonium polyphosphate had bet- ter bioavailability, meanwhile promoted the absorption of microelement zinc in crops.
基金Supported by Chongqing Municipal Frontiers and Application Base Research Program(cstc2014jcyj A20002)Chongqing Municipal Key Laboratory of Institutions of Higher Education(WEPKL2013MS-10)+4 种基金Chongqing Three Georges University Key Project(14ZD15)Wanzhou District Soft Science Project(201404009)Chongqing Three Georges University Key Project(14ZD15)Wanzhou District Soft Science Project(201404009)Chongqing Three Georges University Innovation Planning Project for University Students(2014-56)
文摘Under the background of global climate change,we analyze the change tendency of average temperature and amount of precipitation influencing the corn's growth period. The results show that from March to August,the monthly temperatures show an upward trend,but the rise is different in different months,and the maximum temperature rise is in May. Precipitation in different months has different trends. Climate change brings about favorable conditions at high altitudes in Fengjie,reduces production due to the temperature drop after the beginning of autumn,and increases the pressure on the corn supply.
文摘The S-endotoxin genes of Bacillus thuringiensis (Bt) and proteinase inhibitor (PI) genes are two kinds of genes popularly used for developing transgenic plants resistant to insect pests. To clarify whether there is any risk concerning the effects of pollens from these transgenic crops on non-target insects with economic importance, such as the effects on the growth and development as well as cocoon quality of the silkworm, Bombyx mori Linnaeus, a series of feeding experiments were conducted, using pollens from transgenic cotton or corn containing cry 1Ac, cry1A+CpTI or crylAb genes, compared with pollens from non-transgenic normal cotton and corn as well as the non-pollen treatment. In contrast to the latter ones, pollens from transgenic plants showed no significant adverse effects on larval mortality, cocoon weight, pupa weight, cocoon shell weight, pupation rate, emergence rate and fecundity of the silkworm after neonates were fed with the pollens for 72 h. In addition, no dosage effects of pollens were found. Though the duration of 1st instar larvae was prolonged in the case of feeding with transgenic pollens as compared with those of the non-pollen treatment , but they were not significantly different from those fed with pollens from non-transgenic cotton or corn. Meanwhile, the body weight of the 3rd instar molters fed with transgenic pollens was obviously different from those for non-pollen treatment, and was all significantly heavier than that of the controls. Consequently, it is considered that the adverse effect of pollens from transgenic insect-resistant cotton and corn on the growth and development of the silkworm is negligible.
文摘To develop an efficient water use strategy for crop irrigation, we need to know how much water can be reduced without decreasing yield. A study was designed to determine corn growth stages at which water could be reduced without affecting grain yield, and at what soil moisture level water deficit stress begins in the plants in a silt loam soil. An experiment was conducted in a randomized complete block with a 3 × 4 factorial design in four replications, where treatments consisted of three soil moisture levels [100%, 75%, and 50% of field capacity (FC) of a silt loam soil by weight] and four growth stages [fourteen leaf stage (V14), silking (R1), milk (R3), and dent (R5) stages] in a greenhouse. Growth stages at the reproductive and grain fill stages of corn were selected because this study was intended for the Mississippi Delta, where there is frequent drought during these growth stages making irrigation necessary for corn production, whereas there is usually adequate rainfall during the vegetative growth stages. Results from this study showed that reducing soil moisture from 100% FC (fully irrigated) to 75% FC of a silt loam soil starting at the R1 growth stage in corn did not reduce yield significantly compared to yield from the 100% FC, while saving a significant amount of water. Physiological investigations at the three soil moisture treatments showed that a mild moisture deficit stress might have started at the 75% FC treatment. With further investigation, if savings in water at 75% FC result in a significant reduction in energy cost, it may be profitable to reduce soil moisture to 75% FC in a silt loam soil.