期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Profile of biological characterizations and clinical application of corneal stem/progenitor cells 被引量:2
1
作者 Pei-Xi Ying Min Fu +11 位作者 Chang Huang Zhi-Hong Li Qing-Yi Mao Sheng Fu Xu-Hui Jia Yu-Chen Cao Li-Bing Hong Li-Yang Cai Xi Guo Ru-Bing Liu Fan-ke Meng Guo-Guo Yi 《World Journal of Stem Cells》 SCIE 2022年第11期777-797,共21页
Corneal stem/progenitor cells are typical adult stem/progenitor cells.The human cornea covers the front of the eyeball,which protects the eye from the outside environment while allowing vision.The location and functio... Corneal stem/progenitor cells are typical adult stem/progenitor cells.The human cornea covers the front of the eyeball,which protects the eye from the outside environment while allowing vision.The location and function demand the cornea to maintain its transparency and to continuously renew its epithelial surface by replacing injured or aged cells through a rapid turnover process in which corneal stem/progenitor cells play an important role.Corneal stem/progenitor cells include mainly corneal epithelial stem cells,corneal endothelial cell progenitors and corneal stromal stem cells.Since the discovery of corneal epithelial stem cells(also known as limbal stem cells)in 1971,an increasing number of markers for corneal stem/progenitor cells have been proposed,but there is no consensus regarding the definitive markers for them.Therefore,the identification,isolation and cultivation of these cells remain challenging without a unified approach.In this review,we systematically introduce the profile of biological characterizations,such as anatomy,characteristics,isolation,cultivation and molecular markers,and clinical applications of the three categories of corneal stem/progenitor cells. 展开更多
关键词 corneal epithelial stem cells corneal endothelium stem cells corneal stromal stem cells BIOENGINEERING Gene markers
下载PDF
Corneal stromal mesenchymal stem cells: reconstructing a bioactive cornea and repairing the corneal limbus and stromal microenvironment 被引量:2
2
作者 Xian-Ning Liu Sheng-Li Mi +1 位作者 Yun Chen Yao Wang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2021年第3期448-455,共8页
Corneal stroma-derived mesenchymal stem cells(CS-MSCs) are mainly distributed in the anterior part of the corneal stroma near the corneal limbal stem cells(LSCs). CS-MSCs are stem cells with self-renewal and multidire... Corneal stroma-derived mesenchymal stem cells(CS-MSCs) are mainly distributed in the anterior part of the corneal stroma near the corneal limbal stem cells(LSCs). CS-MSCs are stem cells with self-renewal and multidirectional differentiation potential. A large amount of data confirmed that CS-MSCs can be induced to differentiate into functional keratocytes in vitro, which is the motive force for maintaining corneal transparency and producing a normal corneal stroma. CS-MSCs are also an important component of the limbal microenvironment. Furthermore, they are of great significance in the reconstruction of ocular surface tissue and tissue engineering for active biocornea construction. In this paper, the localization and biological characteristics of CS-MSCs, the use of CS-MSCs to reconstruct a tissue-engineered active biocornea, and the repair of the limbal and matrix microenvironment by CS-MSCs are reviewed, and their application prospects are discussed. 展开更多
关键词 corneal stroma-derived mesenchymal stem cells bioactive cornea corneal limbus tissue-engineered active biocornea stromal microenvironment
下载PDF
Anti-inflammatory potential of human corneal stroma-derived stem cells determined by a novel in vitro corneal epithelial injury model 被引量:1
3
作者 Mariana Lizeth Orozco Morales Nagi M Marsit +2 位作者 Owen D McIntosh Andrew Hopkinson Laura E Sidney 《World Journal of Stem Cells》 SCIE CAS 2019年第2期84-99,共16页
BACKGROUND An in vitro injury model mimicking a corneal surface injury was optimised using human corneal epithelial cells(hCEC).AIM To investigate whether corneal-stroma derived stem cells(CSSC) seeded on an amniotic ... BACKGROUND An in vitro injury model mimicking a corneal surface injury was optimised using human corneal epithelial cells(hCEC).AIM To investigate whether corneal-stroma derived stem cells(CSSC) seeded on an amniotic membrane(AM) construct manifests an anti-inflammatory, healing response.METHODS Treatment of hCEC with ethanol and pro-inflammatory cytokines were compared in terms of viability loss, cytotoxicity, and pro-inflammatory cytokine release, in order to generate the in vitro injury. This resulted in an optimal injury of 20%(v/v) ethanol for 30 s with 1 ng/mL interleukin-1(IL-1) beta. Co-culture experiments were performed with CSSC alone and with CSSC-AM constructs.The effect of injury and co-culture on viability, cytotoxicity, IL-6 and IL-8 production, and IL1 B, TNF, IL6, and CXCL8 mRNA expression were assessed.RESULTS Co-culture with CSSC inhibited loss of hCEC viability caused by injury. Enzyme linked immunosorbent assay and polymerase chain reaction showed a significant reduction in the production of IL-6 and IL-8 pro-inflammatory cytokines, and reduction in pro-inflammatory cytokine mRNA expression during co-culture with CSSC alone and with the AM construct. These results confirmed the therapeutic potential of the CSSC and the possible use of AM as a cell carrier for application to the ocular surface.CONCLUSION CSSC were shown to have a potentially therapeutic anti-inflammatory effectwhen treating injured hCEC, demonstrating an important role in corneal regeneration and wound healing, leading to an improved knowledge of their potential use for research and therapeutic purposes. 展开更多
关键词 Cornea corneal injuries Injury model corneal epithelium corneal stroma-derived stem cells AMNION ANTI-INFLAMMATORY Cell therapy
下载PDF
Cryopreserved limbal lamellar keratoplasty for peripheral corneal and limbal reconstruction 被引量:1
4
作者 Hua-Tao Xie Jing Li +3 位作者 Yang Liu Dong-Ling Jiang Rui-Fen Shen Ming-Chang Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2018年第4期699-702,共4页
This study aimed to evaluate the outcomes and described the recovery process of cryopreserved limbal lamellar keratoplasty(CLLK) for peripheral corneal and limbal diseases. Thirteen eyes of 12 patients with a mean a... This study aimed to evaluate the outcomes and described the recovery process of cryopreserved limbal lamellar keratoplasty(CLLK) for peripheral corneal and limbal diseases. Thirteen eyes of 12 patients with a mean age of 41±23.9 y were included. The average follow-up was 12.1±5.6 mo. Stable ocular surface was achieved in all eyes at last follow-up. Epithelialization originated from both recipient and graft in 9 eyes. We conclude that CLLK compensates for the shortage of donor corneas and cryopreserved limbal grafts provide epithelialization sources in ocular surface reconstruction. 展开更多
关键词 cryopreserve epithelialization lamellar keratoplasty limbus neovascularization ocular surface peripheral corneal and limbal diseases stem cells
下载PDF
The anti-scarring effect of corneal stromal stem cell therapy is mediated by transforming growth factorβ3 被引量:1
5
作者 Lin Weng James L.Funderburgh +6 位作者 Irona Khandaker Moira L.Geary Tianbing Yang Rohan Basu Martha L.Funderburgh Yiqin Du Gary Hin-Fai Yam 《Eye and Vision》 SCIE CSCD 2020年第1期512-525,共14页
Background:Corneal stromal stem cells(CSSC)reduce corneal inflammation,prevent fibrotic scarring,and regenerate transparent stromal tissue in injured corneas.These effects rely on factors produced by CSSC to block the... Background:Corneal stromal stem cells(CSSC)reduce corneal inflammation,prevent fibrotic scarring,and regenerate transparent stromal tissue in injured corneas.These effects rely on factors produced by CSSC to block the fibrotic gene expression.This study investigated the mechanism of the scar-free regeneration effect.Methods:Primary human CSSC(hCSSC)from donor corneal rims were cultivated to passage 3 and co-cultured with mouse macrophage RAW264.7 cells induced to M1 pro-inflammatory phenotype by treatment with interferonγand lipopolysaccharides,or to M2 anti-inflammatory phenotype by interleukin-4,in a Transwell system.The timecourse expression of human transforming growth factorβ3(hTGFβ3)and hTGFβ1 were examined by immunofluorescence and qPCR.TGFβ3 knockdown for>70%in hCSSC[hCSSC-TGFβ3(si)]was achieved by small interfering RNA transfection.Naïve CSSC and hCSSC-TGFβ3(si)were transplanted in a fibrin gel to mouse corneas,respectively,after wounding by stromal ablation.Corneal clarity and the expression of mouse inflammatory and fibrosis genes were examined.Results:hTGFβ3 was upregulated by hCSSC when co-cultured with RAW cells under M1 condition.Transplantation of hCSSC to wounded mouse corneas showed significant upregulation of hTGFβ3 at days 1 and 3 post-injury,along with the reduced expression of mouse inflammatory genes(CD80,C-X-C motif chemokine ligand 5,lipocalin 2,plasminogen activator urokinase receptor,pro-platelet basic protein,and secreted phosphoprotein 1).By day 14,hCSSC treatment significantly reduced the expression of fibrotic and scar tissue genes(fibronectin,hyaluronan synthase 2,Secreted protein acidic and cysteine rich,tenascin C,collagen 3a1 andα-smooth muscle actin),and the injured corneas remained clear.However,hCSSC-TGFβ3(si)lost these anti-inflammatory and anti-scarring functions,and the wounded corneas showed intense scarring.Conclusion:This study has demonstrated that the corneal regenerative effect of hCSSC is mediated by TGFβ3,inducing a scar-free tissue response. 展开更多
关键词 Cornea wound healing corneal stromal stem cells TGFΒ3 Inflammation FIBROSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部