Subpixel accuracy for V-groove center in robot welding is researched and a software measure to increase the accuracy of seam tracking by laser is presented. LOG ( Laplacian of Gaussian ) operator is adopted to detec...Subpixel accuracy for V-groove center in robot welding is researched and a software measure to increase the accuracy of seam tracking by laser is presented. LOG ( Laplacian of Gaussian ) operator is adopted to detect image edge. Vgroove center is extracted by corner detection of extremum curvature. Subpixel position is obtained by Lagarange polynomial interpolation algorithm. Experiment results show that the method is brief and applied, and is sufficient for the real time of robot welding by laser sensors.展开更多
Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditio...Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditional corner properties. Based on the two properties, the concept of the fuzzy set is introduced into a detection. Secondly, the extracted-formulae of three groups including the features of the corner subject degree are derived. Through synthesizing the features of three groups, the judgments of the corner detection, location, and optimization are obtained. Finally, by using the algorithm the detection results of several examples and feature curves for some interested parts, as well as the detection results for the test images history in references are given. Results show that the algorithm is easily realized after adopting the fuzzy set, and the detection effect is very ideal.展开更多
Most of local feature descriptors assume that the scene is planar. In the real scene, the captured images come from the 3-D world. 3-D corner as a novel invariant feature is important for the image matching and the ob...Most of local feature descriptors assume that the scene is planar. In the real scene, the captured images come from the 3-D world. 3-D corner as a novel invariant feature is important for the image matching and the object detection, while automatically discriminating 3-D corners from ordinary corners is difficult. A novel method for 3-D corner detection is proposed based on the image graph grammar, and it can detect the 3-D features of corners to some extent. Experimental results show that the method is valid and the 3-D corner is useful for image matching.展开更多
A new parallel algorithm for corner detection on object contour is presented in the paper. In this algorithm whenever a point (pixel) is scanned, the k direction codes between the two sides of the point, which is on t...A new parallel algorithm for corner detection on object contour is presented in the paper. In this algorithm whenever a point (pixel) is scanned, the k direction codes between the two sides of the point, which is on the edge of an object, are obtained by k-step forward and backward boundary tracking. A comer is determined by the sum of the difference between the two weighted code chains. Note that the whole chain code sequence or boundary of an object is not necessary to be extracted at all in this algorithm, and the corners are obtained immediately once the image is scanned, furthermore, what humans perceive as corners can be detected and localized by this algorithm.展开更多
With the high-speed development of digital image processing technology, machine vision technology has been widely used in automatic detection of industrial products. A large amount of products can be treated by comput...With the high-speed development of digital image processing technology, machine vision technology has been widely used in automatic detection of industrial products. A large amount of products can be treated by computer instead of human in a shorter time. In the process of automatic detection, edge detection is one of the most commonly used methods. But with the increasing demand for detection precision,traditional pixel-level methods are difficult to meet the requirement, and more subpixel level methods are in the use. This paper presents a new method to detect curved edge with high precision. First, the target area ratio of pixels near the edge is computed by using one-dimensional edge detection method. Second, parabola is used to approximately represent the curved edge. And we select appropriate parameters to obtain accurate results. This method is able to detect curved edges in subpixel level, and shows its practical effectiveness in automatic measure of products with arc shape in large industrial scene.展开更多
Image corner detection plays an important role in image analysis and recognition. This paper presents a novel corner detector based on the growing neural gas (GNG) network and this proposed detector is called GNG-C....Image corner detection plays an important role in image analysis and recognition. This paper presents a novel corner detector based on the growing neural gas (GNG) network and this proposed detector is called GNG-C. With the GNG network,image topology information can be learned and used to implement corner detection. The GNG-C approach can be described as consisting of the following steps. First,a canny edge detector is used to acquire the contour information of the input image. This edge information is used to train a modified GNG network. A special stopping criterion is defined to terminate network learning. Second,vectors formed between network nodes and their neighbors are used to measure curvatures. Third,dynamic regions of support (ROS) are determined based on these curvatures. These ROS are used to suppress curvature noise. The curvature values of the nodes are then analyzed to estimate the candidate corners. Finally,the candidates are distilled by a non-maxima suppression process to obtain the final set of corners. Experiments on both artificial and real images show that the proposed corner detection method is feasible and effective.展开更多
In this paper,a novel zero-watermark copyright authentication scheme based on Internet public certification system is proposed.This approach utilizes Haar integer wavelet transform based on a lifting scheme and adapti...In this paper,a novel zero-watermark copyright authentication scheme based on Internet public certification system is proposed.This approach utilizes Haar integer wavelet transform based on a lifting scheme and adaptive Harris corner detection to extract image features,which will be used to produce a binary feature map,and the map is very crucial to the generation of watermark registered later.By properly choosing the parameters of aforementioned techniques such as the threshold T and the radius of local feature region R,the feature map is so much more stable and distinguishing that it can be used to construct robust watermark.Simulations demonstrate that the proposed scheme is resistant to many kinds of signal processing and malicious attacks such as Gaussian blurring,additive noising,JPEG lossy compression,cropping,scaling and slight rotation operation.Compared with a relative scheme such as that of Chang's,the scheme in this paper is more practicable and reliable and can be applied to the area of copyright protection.展开更多
With rapid developments in platforms and sensors technology in terms of digital cameras and video recordings,crowd monitoring has taken a considerable attentions in many disciplines such as psychology,sociology,engine...With rapid developments in platforms and sensors technology in terms of digital cameras and video recordings,crowd monitoring has taken a considerable attentions in many disciplines such as psychology,sociology,engineering,and computer vision.This is due to the fact that,monitoring of the crowd is necessary to enhance safety and controllable movements to minimize the risk particularly in highly crowded incidents(e.g.sports).One of the platforms that have been extensively employed in crowd monitoring is unmanned aerial vehicles(UAVs),because UAVs have the capability to acquiring fast,low costs,high-resolution and real-time images over crowd areas.In addition,geo-referenced images can also be provided through integration of on-board positioning sensors(e.g.GPS/IMU)with vision sensors(digital cameras and laser scanner).In this paper,a new testing procedure based on feature from accelerated segment test(FAST)algorithms is introduced to detect the crowd features from UAV images taken from different camera orientations and positions.The proposed test started with converting a circle of 16 pixels surrounding the center pixel into a vector and sorting it in ascending/descending order.A single pixel which takes the ranking number 9(for FAST-9)or 12(for FAST-12)was then compared with the center pixel.Accuracy assessment in terms of completeness and correctness was used to assess the performance of the new testing procedure before and after filtering the crowd features.The results show that the proposed algorithms are able to extract crowd features from different UAV images.Overall,the values of Completeness range from 55 to 70%whereas the range of correctness values was 91 to 94%.展开更多
The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resoluti...The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.展开更多
Peri-urban forests are subject to different dynamics due to several factors. Nfifikh forest is a man-made space, located in suburban of Mohammedia City, belonging to Casablanca, Settat Region, and geographically betwe...Peri-urban forests are subject to different dynamics due to several factors. Nfifikh forest is a man-made space, located in suburban of Mohammedia City, belonging to Casablanca, Settat Region, and geographically between Casablanca, the economic and business Capital of Morocco and Rabat, the national political capital. Over the past three decades, it has experienced several significant degradations. The aim of this study is to evaluate and quantify the deforestation within the study area using a forest cover change detection of various vegetation indices and subpixel classification to pick out high density plots with Landsat images TM, ETM+ and OLI. Remote sensing is used to highlight the changes caused through Space-Time. This monitoring might help managers to generate forest management plans and to moderate the speed of deforestation and degradation. The results show a significant change in vegetation cover detected between 1987 and 2015. The Density increased in 2001 while it decreased considerably in 2015.展开更多
With the increasing necessities for reliable printed circuit board(PCB) product, there has been a considerable demand for high speed and high precision vision positioning system. To locate a rectangular lead component...With the increasing necessities for reliable printed circuit board(PCB) product, there has been a considerable demand for high speed and high precision vision positioning system. To locate a rectangular lead component with high accuracy and reliability, a new visual positioning method was introduced. Considering the limitations of Ghosal sub-pixel edge detection algorithm, an improved algorithm was proposed, in which Harris corner features were used to coarsely detect the edge points and Zernike moments were adopted to accurately detect the edge points. Besides, two formulas were developed to determine the edge intersections whose sub-pixel coordinates were calculated with bilinear interpolation and conjugate gradient method. The last experimental results show that the proposed method can detect the deflection and offset, and the detection errors are less than 0.04° and 0.02 pixels.展开更多
This paper presents a corner-based image alignment algorithm based on the procedures of corner-based template matching and geometric parameter estimation. This algorithm consists of two stages: 1) training phase, and ...This paper presents a corner-based image alignment algorithm based on the procedures of corner-based template matching and geometric parameter estimation. This algorithm consists of two stages: 1) training phase, and 2) matching phase. In the training phase, a corner detection algorithm is used to extract the corners. These corners are then used to build the pyramid images. In the matching phase, the corners are obtained using the same corner detection algorithm. The similarity measure is then determined by the differences of gradient vector between the corners obtained in the template image and the inspection image, respectively. A parabolic function is further applied to evaluate the geometric relationship between the template and the inspection images. Results show that the corner-based template matching outperforms the original edge-based template matching in efficiency, and both of them are robust against non-liner light changes. The accuracy and precision of the corner-based image alignment are competitive to that of edge-based image alignment under the same environment. In practice, the proposed algorithm demonstrates its precision, efficiency and robustness in image alignment for real world applications.展开更多
基金This work is financially supported by National Nature Science Foundation of China (Grant No. 50175027).
文摘Subpixel accuracy for V-groove center in robot welding is researched and a software measure to increase the accuracy of seam tracking by laser is presented. LOG ( Laplacian of Gaussian ) operator is adopted to detect image edge. Vgroove center is extracted by corner detection of extremum curvature. Subpixel position is obtained by Lagarange polynomial interpolation algorithm. Experiment results show that the method is brief and applied, and is sufficient for the real time of robot welding by laser sensors.
文摘Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditional corner properties. Based on the two properties, the concept of the fuzzy set is introduced into a detection. Secondly, the extracted-formulae of three groups including the features of the corner subject degree are derived. Through synthesizing the features of three groups, the judgments of the corner detection, location, and optimization are obtained. Finally, by using the algorithm the detection results of several examples and feature curves for some interested parts, as well as the detection results for the test images history in references are given. Results show that the algorithm is easily realized after adopting the fuzzy set, and the detection effect is very ideal.
文摘Most of local feature descriptors assume that the scene is planar. In the real scene, the captured images come from the 3-D world. 3-D corner as a novel invariant feature is important for the image matching and the object detection, while automatically discriminating 3-D corners from ordinary corners is difficult. A novel method for 3-D corner detection is proposed based on the image graph grammar, and it can detect the 3-D features of corners to some extent. Experimental results show that the method is valid and the 3-D corner is useful for image matching.
文摘A new parallel algorithm for corner detection on object contour is presented in the paper. In this algorithm whenever a point (pixel) is scanned, the k direction codes between the two sides of the point, which is on the edge of an object, are obtained by k-step forward and backward boundary tracking. A comer is determined by the sum of the difference between the two weighted code chains. Note that the whole chain code sequence or boundary of an object is not necessary to be extracted at all in this algorithm, and the corners are obtained immediately once the image is scanned, furthermore, what humans perceive as corners can be detected and localized by this algorithm.
基金This work was supported in part by the National Natural Science Foundation of China (No. 61170094), Shanghai Committee of Science and Technology (14JC1402202 and 14441904403), and 863 Program 2014AA015101.
文摘With the high-speed development of digital image processing technology, machine vision technology has been widely used in automatic detection of industrial products. A large amount of products can be treated by computer instead of human in a shorter time. In the process of automatic detection, edge detection is one of the most commonly used methods. But with the increasing demand for detection precision,traditional pixel-level methods are difficult to meet the requirement, and more subpixel level methods are in the use. This paper presents a new method to detect curved edge with high precision. First, the target area ratio of pixels near the edge is computed by using one-dimensional edge detection method. Second, parabola is used to approximately represent the curved edge. And we select appropriate parameters to obtain accurate results. This method is able to detect curved edges in subpixel level, and shows its practical effectiveness in automatic measure of products with arc shape in large industrial scene.
基金supported by the National Natural Science Foundation of China (60972112)
文摘Image corner detection plays an important role in image analysis and recognition. This paper presents a novel corner detector based on the growing neural gas (GNG) network and this proposed detector is called GNG-C. With the GNG network,image topology information can be learned and used to implement corner detection. The GNG-C approach can be described as consisting of the following steps. First,a canny edge detector is used to acquire the contour information of the input image. This edge information is used to train a modified GNG network. A special stopping criterion is defined to terminate network learning. Second,vectors formed between network nodes and their neighbors are used to measure curvatures. Third,dynamic regions of support (ROS) are determined based on these curvatures. These ROS are used to suppress curvature noise. The curvature values of the nodes are then analyzed to estimate the candidate corners. Finally,the candidates are distilled by a non-maxima suppression process to obtain the final set of corners. Experiments on both artificial and real images show that the proposed corner detection method is feasible and effective.
基金Supported by the National Natural Science Foundation of China (60873117)the Key Program of Natural Science Foundation of Tianjin (07JCZDJC06600)
文摘In this paper,a novel zero-watermark copyright authentication scheme based on Internet public certification system is proposed.This approach utilizes Haar integer wavelet transform based on a lifting scheme and adaptive Harris corner detection to extract image features,which will be used to produce a binary feature map,and the map is very crucial to the generation of watermark registered later.By properly choosing the parameters of aforementioned techniques such as the threshold T and the radius of local feature region R,the feature map is so much more stable and distinguishing that it can be used to construct robust watermark.Simulations demonstrate that the proposed scheme is resistant to many kinds of signal processing and malicious attacks such as Gaussian blurring,additive noising,JPEG lossy compression,cropping,scaling and slight rotation operation.Compared with a relative scheme such as that of Chang's,the scheme in this paper is more practicable and reliable and can be applied to the area of copyright protection.
文摘With rapid developments in platforms and sensors technology in terms of digital cameras and video recordings,crowd monitoring has taken a considerable attentions in many disciplines such as psychology,sociology,engineering,and computer vision.This is due to the fact that,monitoring of the crowd is necessary to enhance safety and controllable movements to minimize the risk particularly in highly crowded incidents(e.g.sports).One of the platforms that have been extensively employed in crowd monitoring is unmanned aerial vehicles(UAVs),because UAVs have the capability to acquiring fast,low costs,high-resolution and real-time images over crowd areas.In addition,geo-referenced images can also be provided through integration of on-board positioning sensors(e.g.GPS/IMU)with vision sensors(digital cameras and laser scanner).In this paper,a new testing procedure based on feature from accelerated segment test(FAST)algorithms is introduced to detect the crowd features from UAV images taken from different camera orientations and positions.The proposed test started with converting a circle of 16 pixels surrounding the center pixel into a vector and sorting it in ascending/descending order.A single pixel which takes the ranking number 9(for FAST-9)or 12(for FAST-12)was then compared with the center pixel.Accuracy assessment in terms of completeness and correctness was used to assess the performance of the new testing procedure before and after filtering the crowd features.The results show that the proposed algorithms are able to extract crowd features from different UAV images.Overall,the values of Completeness range from 55 to 70%whereas the range of correctness values was 91 to 94%.
基金National Natural Science Foundation of China(No.41871305)National Key Research and Development Program of China(No.2017YFC0602204)+2 种基金Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGQY1945)Open Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education and the Fundamental Research Funds for the Central Universities(No.GLAB2019ZR02)Open Fund of Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources,China(No.KF-2020-05-068)。
文摘The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.
文摘Peri-urban forests are subject to different dynamics due to several factors. Nfifikh forest is a man-made space, located in suburban of Mohammedia City, belonging to Casablanca, Settat Region, and geographically between Casablanca, the economic and business Capital of Morocco and Rabat, the national political capital. Over the past three decades, it has experienced several significant degradations. The aim of this study is to evaluate and quantify the deforestation within the study area using a forest cover change detection of various vegetation indices and subpixel classification to pick out high density plots with Landsat images TM, ETM+ and OLI. Remote sensing is used to highlight the changes caused through Space-Time. This monitoring might help managers to generate forest management plans and to moderate the speed of deforestation and degradation. The results show a significant change in vegetation cover detected between 1987 and 2015. The Density increased in 2001 while it decreased considerably in 2015.
基金Project(51175242)supported by the National Natural Science Foundation of ChinaProject(BA2012031)supported by the Jiangsu Province Science and Technology Foundation of China
文摘With the increasing necessities for reliable printed circuit board(PCB) product, there has been a considerable demand for high speed and high precision vision positioning system. To locate a rectangular lead component with high accuracy and reliability, a new visual positioning method was introduced. Considering the limitations of Ghosal sub-pixel edge detection algorithm, an improved algorithm was proposed, in which Harris corner features were used to coarsely detect the edge points and Zernike moments were adopted to accurately detect the edge points. Besides, two formulas were developed to determine the edge intersections whose sub-pixel coordinates were calculated with bilinear interpolation and conjugate gradient method. The last experimental results show that the proposed method can detect the deflection and offset, and the detection errors are less than 0.04° and 0.02 pixels.
文摘This paper presents a corner-based image alignment algorithm based on the procedures of corner-based template matching and geometric parameter estimation. This algorithm consists of two stages: 1) training phase, and 2) matching phase. In the training phase, a corner detection algorithm is used to extract the corners. These corners are then used to build the pyramid images. In the matching phase, the corners are obtained using the same corner detection algorithm. The similarity measure is then determined by the differences of gradient vector between the corners obtained in the template image and the inspection image, respectively. A parabolic function is further applied to evaluate the geometric relationship between the template and the inspection images. Results show that the corner-based template matching outperforms the original edge-based template matching in efficiency, and both of them are robust against non-liner light changes. The accuracy and precision of the corner-based image alignment are competitive to that of edge-based image alignment under the same environment. In practice, the proposed algorithm demonstrates its precision, efficiency and robustness in image alignment for real world applications.